U-tiling: UQC5641
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2237 |
*2626 |
(5,6,2) |
{12,4,3,4,12} |
{5.5.5.5.5.5.5.5.5.5.5.5}{5.4.4.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc9307
|
|
R-3m |
166 |
rhombohedral |
{12,4,3,4,12} |
17 |
(5,6) |
G
|
False
|
|
sqc9304
|
|
R-3 |
148 |
rhombohedral |
{12,4,3,4,12} |
17 |
(5,7) |
D
|
False
|
|
sqc9312
|
|
R-3m |
166 |
rhombohedral |
{12,4,3,4,12} |
17 |
(5,6) |
Topological data
Vertex degrees | {12,4,3,4,12} |
2D vertex symbol | {5.5.5.5.5.5.5.5.5.5.5.5}{5.4.4.5}{5.4.4}{4.4.4.4}{4.4.4.4.4.4.4.4.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<30.1:156:118 3 5 7 9 11 13 105 16 18 20 22 24 26 144 29 31 33 35 37 39 131 42 44 46 48 50 52 66 55 57 59 61 63 65 68 70 72 74 76 78 92 81 83 85 87 89 91 94 96 98 100 102 104 107 109 111 113 115 117 120 122 124 126 128 130 133 135 137 139 141 143 146 148 150 152 154 156,2 4 122 8 13 10 12 15 17 109 21 26 23 25 28 30 148 34 39 36 38 41 43 135 47 52 49 51 54 56 70 60 65 62 64 67 69 73 78 75 77 80 82 96 86 91 88 90 93 95 99 104 101 103 106 108 112 117 114 116 119 121 125 130 127 129 132 134 138 143 140 142 145 147 151 156 153 155,27 15 16 6 7 21 22 140 141 129 130 40 19 20 153 154 116 117 54 55 32 33 60 61 101 102 155 156 67 68 45 46 73 74 88 89 142 143 79 58 59 127 128 77 78 92 71 72 114 115 106 107 84 85 112 113 103 104 119 120 97 98 125 126 131 110 111 144 123 124 145 146 136 137 151 152 149 150:5 4 5 4 5 4 5 4 5 4 4 5 4 4 4 4 4 4,12 4 3 4 12 3 4 3 4 4 3 4 3 4 3 4 4> {(1, 121): 'tau2', (2, 61): 't3', (2, 62): 't3', (2, 63): 'tau1', (2, 48): 't2', (2, 49): 't2', (2, 50): 'tau3', (2, 51): 'tau3', (2, 11): 'tau2^-1', (1, 108): 'tau3^-1', (2, 36): 't3', (2, 37): 'tau2^-1', (2, 38): 'tau2^-1', (0, 39): 'tau3', (2, 35): 't3', (0, 26): 'tau2^-1', (2, 12): 'tau2^-1', (2, 152): 't1', (2, 25): 'tau3', (1, 82): 'tau1', (2, 140): 't1', (2, 139): 't1', (0, 0): 'tau2^-1', (1, 69): 'tau1^-1', (0, 13): 'tau3', (2, 113): 't2^-1', (2, 114): 't2^-1', (2, 23): 't1^-1', (0, 52): 'tau1', (2, 24): 'tau3', (2, 102): 'tau1^-1', (2, 103): 'tau1^-1', (0, 91): 'tau1^-1', (1, 30): 'tau2^-1', (1, 43): 'tau3', (2, 77): 'tau1^-1'}