U-tiling: UQC5694
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc2250 |
*2323 |
(5,6,2) |
{6,4,4,3,6} |
{7.7.7.7.7.7}{7.7.7.7}{7.3.3.7}{... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc12911
|
|
P4232 |
208 |
cubic |
{6,4,4,3,6} |
38 |
(5,6) |
G
|
False
|
|
sqc12908
|
|
I213 |
199 |
cubic |
{6,4,4,3,6} |
38 |
(5,7) |
D
|
False
|
|
sqc12903
|
|
F-43m |
216 |
cubic |
{6,4,4,3,6} |
38 |
(5,6) |
Topological data
Vertex degrees | {6,4,4,3,6} |
2D vertex symbol | {7.7.7.7.7.7}{7.7.7.7}{7.3.3.7}{7.3.3}{3.3.3.3.3.3} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<31.1:312:40 3 5 7 9 11 13 66 16 18 20 22 24 26 157 29 31 33 35 37 39 42 44 46 48 50 52 235 55 57 59 61 63 65 68 70 72 74 76 78 274 81 83 85 87 89 91 131 94 96 98 100 102 104 183 107 109 111 113 115 117 209 120 122 124 126 128 130 133 135 137 139 141 143 248 146 148 150 152 154 156 159 161 163 165 167 169 287 172 174 176 178 180 182 185 187 189 191 193 195 261 198 200 202 204 206 208 211 213 215 217 219 221 300 224 226 228 230 232 234 237 239 241 243 245 247 250 252 254 256 258 260 263 265 267 269 271 273 276 278 280 282 284 286 289 291 293 295 297 299 302 304 306 308 310 312,2 4 6 46 10 13 12 15 17 19 72 23 26 25 28 30 32 163 36 39 38 41 43 45 49 52 51 54 56 58 241 62 65 64 67 69 71 75 78 77 80 82 84 280 88 91 90 93 95 97 137 101 104 103 106 108 110 189 114 117 116 119 121 123 215 127 130 129 132 134 136 140 143 142 145 147 149 254 153 156 155 158 160 162 166 169 168 171 173 175 293 179 182 181 184 186 188 192 195 194 197 199 201 267 205 208 207 210 212 214 218 221 220 223 225 227 306 231 234 233 236 238 240 244 247 246 249 251 253 257 260 259 262 264 266 270 273 272 275 277 279 283 286 285 288 290 292 296 299 298 301 303 305 309 312 311,14 28 29 95 96 8 9 101 102 51 52 80 81 199 200 21 22 205 206 77 78 53 147 148 34 35 153 154 168 169 66 171 172 186 187 47 48 192 193 106 107 264 265 60 61 270 271 246 247 210 211 238 239 73 74 244 245 105 251 252 86 87 257 258 285 286 118 145 146 99 100 142 143 134 135 112 113 140 141 194 195 275 276 290 291 125 126 296 297 220 221 209 262 263 138 139 222 151 152 259 260 235 288 289 277 278 164 165 283 284 261 225 226 177 178 231 232 298 299 274 223 224 190 191 287 249 250 203 204 272 273 303 304 216 217 309 310 229 230 311 312 301 302 242 243 300 255 256 268 269 281 282 294 295 307 308:7 3 7 3 7 3 3 7 3 3 7 3 7 3 7 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 3 3 3 3 3 3,6 4 4 3 6 4 4 3 6 4 3 6 6 4 4 4 4 3 4 4 4 3 6 3 4 3 4 4 3 6 3 6 4 4 3 3 4 3> {(1, 123): 'tau3^-1*t1^-1', (2, 191): 't1', (2, 184): 'tau3^-1', (2, 185): 't1', (2, 186): 't1', (2, 180): 'tau2^-1*t3^-1*tau1', (2, 181): 'tau2^-1*t3^-1*tau1', (2, 183): 'tau3^-1', (2, 178): 't1^-1*tau3^-1', (2, 179): 't1^-1*tau3^-1', (2, 172): 't1^-1*tau3^-1', (2, 173): 't1^-1*tau3^-1', (0, 169): 'tau2^-1*t3^-1*tau1', (2, 169): 'tau2^-1', (1, 97): 't1^-1', (2, 165): 't2', (2, 166): 't2', (2, 160): 't2', (1, 227): 't2', (2, 159): 't2', (2, 154): 't2', (2, 155): 't2', (1, 201): 't3', (2, 141): 't1', (2, 142): 't1', (0, 143): 't2', (2, 128): 'tau3^-1*t1^-1', (2, 129): 'tau3^-1*t1^-1', (2, 126): 't2^-1', (2, 127): 't2^-1', (2, 120): 't2^-1', (2, 121): 't2^-1', (2, 244): 't3^-1', (2, 117): 'tau3^-1', (0, 117): 'tau3^-1*t1^-1', (2, 236): 'tau1^-1', (2, 237): 't3^-1', (2, 238): 't3^-1', (1, 253): 't2^-1', (2, 232): 't2', (2, 233): 't2', (1, 175): 'tau2^-1*t3^-1*tau1', (2, 235): 'tau1^-1', (0, 91): 't1^-1', (2, 217): 'tau2*t3*tau1^-1', (2, 218): 'tau2*t3*tau1^-1', (0, 299): 't2^-1', (2, 212): 'tau2*t3*tau1^-1', (2, 209): 'tau2', (2, 210): 'tau2', (2, 211): 'tau2*t3*tau1^-1', (2, 206): 't3', (2, 207): 't3', (2, 74): 't3', (0, 195): 't3', (2, 192): 't1', (2, 195): 'tau1'}