U-tiling: UQC5740
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2270 |
*2323 |
(5,6,2) |
{4,4,6,4,3} |
{5.4.4.5}{5.5.4.4}{4.4.4.4.4.4}{... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc12917
|
|
P4232 |
208 |
cubic |
{4,4,6,4,3} |
38 |
(5,6) |
G
|
False
|
|
sqc12916
|
|
I213 |
199 |
cubic |
{4,4,6,4,3} |
38 |
(5,7) |
D
|
False
|
|
sqc12915
|
|
F-43m |
216 |
cubic |
{4,4,6,4,3} |
38 |
(5,6) |
Topological data
Vertex degrees | {4,4,6,4,3} |
2D vertex symbol | {5.4.4.5}{5.5.4.4}{4.4.4.4.4.4}{4.4.4.4}{5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<34.1:312:40 3 5 7 9 11 13 66 16 18 20 22 24 26 157 29 31 33 35 37 39 42 44 46 48 50 52 235 55 57 59 61 63 65 68 70 72 74 76 78 274 81 83 85 87 89 91 131 94 96 98 100 102 104 183 107 109 111 113 115 117 209 120 122 124 126 128 130 133 135 137 139 141 143 248 146 148 150 152 154 156 159 161 163 165 167 169 287 172 174 176 178 180 182 185 187 189 191 193 195 261 198 200 202 204 206 208 211 213 215 217 219 221 300 224 226 228 230 232 234 237 239 241 243 245 247 250 252 254 256 258 260 263 265 267 269 271 273 276 278 280 282 284 286 289 291 293 295 297 299 302 304 306 308 310 312,2 12 6 11 8 10 52 15 25 19 24 21 23 78 28 38 32 37 34 36 169 41 51 45 50 47 49 54 64 58 63 60 62 247 67 77 71 76 73 75 80 90 84 89 86 88 286 93 103 97 102 99 101 143 106 116 110 115 112 114 195 119 129 123 128 125 127 221 132 142 136 141 138 140 145 155 149 154 151 153 260 158 168 162 167 164 166 171 181 175 180 177 179 299 184 194 188 193 190 192 197 207 201 206 203 205 273 210 220 214 219 216 218 223 233 227 232 229 231 312 236 246 240 245 242 244 249 259 253 258 255 257 262 272 266 271 268 270 275 285 279 284 281 283 288 298 292 297 294 296 301 311 305 310 307 309,14 4 5 19 20 34 35 101 102 103 104 17 18 86 87 205 206 207 208 53 30 31 58 59 153 154 155 156 66 43 44 71 72 177 178 192 193 194 195 56 57 112 113 270 271 272 273 69 70 216 217 244 245 246 247 105 82 83 110 111 257 258 259 260 118 95 96 123 124 151 152 108 109 140 141 142 143 121 122 281 282 296 297 298 299 209 134 135 214 215 268 269 222 147 148 227 228 235 160 161 240 241 294 295 283 284 285 286 261 173 174 266 267 231 232 233 234 274 186 187 279 280 229 230 287 199 200 292 293 255 256 212 213 309 310 311 312 225 226 238 239 307 308 300 251 252 305 306 264 265 277 278 290 291 303 304:5 4 5 4 5 4 4 5 4 4 5 4 5 4 5 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 4 4 4 4 4,4 4 6 4 3 4 4 3 4 4 3 4 4 6 4 4 4 4 4 4 4 4 6 4 4 4 3 4 4 4 4 6 4 4 4 4 4 4> {(2, 189): 'tau3^-1', (2, 190): 'tau3^-1', (2, 191): 't1', (2, 180): 't1^-1*tau3^-1', (2, 181): 't1^-1*tau3^-1', (2, 178): 't1^-1*tau3^-1', (2, 179): 't1^-1*tau3^-1', (1, 233): 't2', (2, 174): 'tau2^-1', (2, 175): 'tau2^-1', (2, 168): 't2', (2, 169): 'tau2^-1', (2, 165): 't2', (2, 166): 't2', (2, 167): 't2', (1, 103): 't1^-1', (1, 220): 't1*tau3', (0, 143): 't2', (1, 207): 't3', (2, 117): 'tau3^-1', (2, 128): 't2^-1', (2, 129): 't2^-1', (2, 126): 't2^-1', (2, 127): 't2^-1', (2, 122): 'tau3^-1', (2, 123): 'tau3^-1', (2, 244): 't3^-1', (2, 245): 't3^-1', (2, 246): 't3^-1', (1, 181): 'tau2^-1*t3^-1*tau1', (2, 241): 'tau1^-1', (2, 242): 'tau1^-1', (0, 117): 'tau3^-1*t1^-1', (2, 220): 'tau2*t3*tau1^-1', (0, 91): 't1^-1', (1, 155): 't2', (0, 221): 't2', (2, 216): 'tau2', (2, 217): 'tau2*t3*tau1^-1', (2, 218): 'tau2*t3*tau1^-1', (2, 219): 'tau2*t3*tau1^-1', (2, 215): 'tau2', (0, 169): 'tau2^-1*t3^-1*tau1', (2, 200): 'tau1', (2, 201): 'tau1', (2, 74): 't3', (0, 195): 't3', (2, 192): 't1', (2, 193): 't1', (2, 194): 't1', (2, 195): 'tau1'}