U-tiling: UQC5840
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2387 |
*2626 |
(5,6,2) |
{12,4,8,12,4} |
{3.3.3.3.3.3.3.3.3.3.3.3}{3.4.4.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc9966
|
|
R-3m |
166 |
rhombohedral |
{12,4,8,12,4} |
14 |
(5,6) |
G
|
False
|
|
sqc9968
|
|
R-3 |
148 |
rhombohedral |
{12,4,8,12,4} |
14 |
(5,7) |
D
|
False
|
|
sqc9967
|
|
R-3m |
166 |
rhombohedral |
{12,4,8,12,4} |
14 |
(5,6) |
Topological data
Vertex degrees | {12,4,8,12,4} |
2D vertex symbol | {3.3.3.3.3.3.3.3.3.3.3.3}{3.4.4.3}{3.4.4.3.3.4.4.3}{4.4.4.4.4.4.4.4.4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<4.1:168:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168,3 6 5 9 14 11 13 17 20 19 23 28 25 27 31 34 33 37 42 39 41 45 48 47 51 56 53 55 59 62 61 65 70 67 69 73 76 75 79 84 81 83 87 90 89 93 98 95 97 101 104 103 107 112 109 111 115 118 117 121 126 123 125 129 132 131 135 140 137 139 143 146 145 149 154 151 153 157 160 159 163 168 165 167,29 30 17 18 7 8 149 150 137 138 41 42 43 44 21 22 163 164 123 124 55 56 59 60 35 36 107 108 165 166 73 74 49 50 93 94 151 152 85 86 63 64 135 136 81 82 97 98 99 100 77 78 121 122 111 112 115 116 91 92 109 110 129 130 105 106 141 142 119 120 153 154 155 156 133 134 167 168 157 158 147 148 161 162:3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4,12 4 8 12 4 4 4 8 8 4 4 4 4 4> {(2, 52): 'tau3', (2, 53): 'tau3', (2, 50): 't2', (2, 51): 't2', (2, 36): 't3', (2, 37): 't3', (2, 164): 'tau2', (2, 165): 'tau2', (2, 162): 't1', (2, 24): 'tau3', (2, 25): 'tau3', (2, 148): 't1', (2, 149): 't1', (2, 23): 't1^-1', (2, 10): 'tau2^-1', (2, 11): 'tau2^-1', (2, 134): 't3^-1', (2, 135): 't3^-1', (2, 120): 't2^-1', (2, 121): 't2^-1', (2, 108): 'tau1^-1', (2, 109): 'tau1^-1', (2, 80): 'tau1^-1', (2, 81): 'tau1^-1'}