U-tiling: UQC5890
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2351 |
*2323 |
(6,6,2) |
{3,4,4,3,6,4} |
{6.6.6}{6.6.6.6}{6.4.4.6}{6.4.4}... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc13110
|
|
P4232 |
208 |
cubic |
{3,4,4,3,6,4} |
44 |
(6,6) |
G
|
False
|
|
sqc13109
|
|
I213 |
199 |
cubic |
{3,4,4,3,6,4} |
44 |
(6,7) |
D
|
False
|
|
sqc13108
|
|
F-43m |
216 |
cubic |
{3,4,4,3,6,4} |
44 |
(6,6) |
Topological data
Vertex degrees | {3,4,4,3,6,4} |
2D vertex symbol | {6.6.6}{6.6.6.6}{6.4.4.6}{6.4.4}{4.4.4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<36.1:336:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 280 282 284 286 288 290 292 294 296 298 300 302 304 306 308 310 312 314 316 318 320 322 324 326 328 330 332 334 336,43 3 5 48 9 14 11 13 71 17 19 76 23 28 25 27 169 31 33 174 37 42 39 41 45 47 51 56 53 55 253 59 61 258 65 70 67 69 73 75 79 84 81 83 295 87 89 300 93 98 95 97 141 101 103 146 107 112 109 111 197 115 117 202 121 126 123 125 225 129 131 230 135 140 137 139 143 145 149 154 151 153 267 157 159 272 163 168 165 167 171 173 177 182 179 181 309 185 187 314 191 196 193 195 199 201 205 210 207 209 281 213 215 286 219 224 221 223 227 229 233 238 235 237 323 241 243 328 247 252 249 251 255 257 261 266 263 265 269 271 275 280 277 279 283 285 289 294 291 293 297 299 303 308 305 307 311 313 317 322 319 321 325 327 331 336 333 335,99 100 31 32 7 8 37 38 25 26 55 56 211 212 87 88 21 22 93 94 83 84 155 156 35 36 67 68 181 182 197 198 185 186 49 50 191 192 81 82 281 282 115 116 63 64 121 122 265 266 253 254 227 228 77 78 233 234 267 268 91 92 123 124 307 308 157 158 105 106 163 164 137 138 153 154 141 142 119 120 209 210 309 310 297 298 133 134 303 304 237 238 283 284 147 148 289 290 235 236 161 162 249 250 279 280 295 296 311 312 175 176 317 318 263 264 239 240 189 190 291 292 321 322 241 242 203 204 247 248 305 306 269 270 217 218 275 276 319 320 293 294 323 324 231 232 245 246 335 336 325 326 259 260 331 332 273 274 333 334 287 288 301 302 315 316 329 330:6 4 6 4 6 4 4 6 4 4 6 4 6 4 6 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 4 4 4 4 4,3 4 4 3 6 4 3 4 4 3 3 3 4 4 4 6 4 4 3 4 4 3 4 4 3 6 4 3 3 4 4 3 4 3 4 4 6 3 4 4 4 3 3 4> {(1, 126): 'tau3^-1*t1^-1', (2, 182): 't1^-1*tau3^-1', (2, 183): 't1^-1*tau3^-1', (1, 187): 'tau2^-1*t3^-1*tau1', (2, 127): 't2^-1', (2, 168): 't2', (2, 169): 't2', (2, 166): 't2', (1, 98): 't1^-1', (1, 229): 't1*tau3', (1, 103): 't1^-1', (2, 167): 't2', (2, 152): 't1', (2, 153): 't1', (1, 210): 't3', (1, 215): 't3', (2, 136): 'tau3^-1', (2, 137): 'tau3^-1', (2, 138): 'tau3^-1*t1^-1', (2, 139): 'tau3^-1*t1^-1', (2, 260): 'tau1^-1', (2, 261): 'tau1^-1', (1, 322): 't2^-1', (1, 243): 't2', (2, 252): 't3^-1', (2, 253): 't3^-1', (2, 254): 'tau1^-1', (2, 255): 'tau1^-1', (2, 250): 't2', (2, 251): 't2', (2, 246): 'tau3', (2, 247): 'tau3', (2, 240): 'tau3', (2, 241): 'tau3', (1, 182): 'tau2^-1*t3^-1*tau1', (1, 154): 't2', (2, 232): 'tau2', (2, 233): 'tau2', (2, 126): 't2^-1', (2, 224): 'tau2*t3*tau1^-1', (2, 225): 'tau2*t3*tau1^-1', (2, 226): 'tau2', (2, 227): 'tau2', (2, 220): 'tau1', (2, 221): 'tau1', (2, 222): 't3', (2, 223): 't3', (1, 159): 't2', (2, 196): 't1', (2, 197): 't1', (2, 192): 'tau2^-1', (2, 193): 'tau2^-1', (2, 194): 'tau2^-1*t3^-1*tau1', (2, 195): 'tau2^-1*t3^-1*tau1'}