U-tiling: UQC5920
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2402 |
*22222 |
(6,7,2) |
{4,3,4,4,4,4} |
{3.6.6.3}{3.6.6}{6.6.6.6}{6.6.6.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc12093
|
|
P4/mmm |
123 |
tetragonal |
{4,3,4,4,4,4} |
32 |
(6,7) |
G
|
False
|
|
sqc12092
|
|
I4122 |
98 |
tetragonal |
{4,3,4,4,4,4} |
32 |
(6,8) |
D
|
False
|
|
sqc7222
|
|
P4222 |
93 |
tetragonal |
{3,4,4,4,4,4} |
16 |
(6,7) |
Topological data
Vertex degrees | {4,3,4,4,4,4} |
2D vertex symbol | {3.6.6.3}{3.6.6}{6.6.6.6}{6.6.6.6}{6.6.6.6}{6.6.6.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<31.2:240:61 3 5 7 9 11 13 15 76 18 20 22 24 26 28 30 91 33 35 37 39 41 43 45 121 48 50 52 54 56 58 60 63 65 67 69 71 73 75 78 80 82 84 86 88 90 93 95 97 99 101 103 105 181 108 110 112 114 116 118 120 123 125 127 129 131 133 135 196 138 140 142 144 146 148 150 211 153 155 157 159 161 163 165 226 168 170 172 174 176 178 180 183 185 187 189 191 193 195 198 200 202 204 206 208 210 213 215 217 219 221 223 225 228 230 232 234 236 238 240,2 63 6 15 8 10 12 14 17 78 21 30 23 25 27 29 32 93 36 45 38 40 42 44 47 123 51 60 53 55 57 59 62 66 75 68 70 72 74 77 81 90 83 85 87 89 92 96 105 98 100 102 104 107 183 111 120 113 115 117 119 122 126 135 128 130 132 134 137 198 141 150 143 145 147 149 152 213 156 165 158 160 162 164 167 228 171 180 173 175 177 179 182 186 195 188 190 192 194 197 201 210 203 205 207 209 212 216 225 218 220 222 224 227 231 240 233 235 237 239,136 4 5 141 142 38 39 25 26 42 43 74 75 106 19 20 111 112 53 54 57 58 89 90 166 34 35 171 172 55 56 104 105 151 49 50 156 157 134 135 196 64 65 201 202 98 99 115 116 102 103 181 79 80 186 187 128 129 145 146 132 133 226 94 95 231 232 160 161 109 110 158 159 162 163 194 195 211 124 125 216 217 175 176 139 140 173 174 177 178 209 210 154 155 224 225 169 170 239 240 184 185 218 219 205 206 222 223 199 200 233 234 237 238 214 215 235 236 229 230:3 6 3 6 3 6 3 6 6 6 6 3 6 6 3 6 3 6 3 6 6 6 6 6,4 3 4 4 4 4 4 3 4 4 4 3 4 3 4 4 4 4 4 4 4 4 4 3 4 4 3 4 3 3 4 4> {(2, 188): 't2*tau3^-1*t1^-1', (2, 189): 'tau1^-1', (2, 190): 'tau1^-1', (2, 191): 't3^-1*tau2^-1', (2, 56): 't1', (2, 234): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 187): 't2*tau3^-1*t1^-1', (2, 37): 't1^-1', (2, 54): 't1', (2, 55): 't1', (2, 176): 'tau3^-1*t2', (2, 177): 'tau3^-1*t2', (2, 178): 't1', (2, 179): 't1', (2, 174): 'tau3^-1', (2, 175): 'tau3^-1', (2, 170): 't1', (2, 171): 't1', (2, 165): 't1', (2, 38): 't1^-1', (2, 160): 'tau2', (2, 161): 'tau2*t3', (2, 162): 'tau2*t3', (2, 57): 't1', (2, 159): 'tau2', (2, 144): 't2^-1', (2, 145): 't2^-1', (2, 133): 't1^-1', (2, 134): 't1^-1', (0, 165): 't1', (2, 128): 'tau3*t2^-1', (0, 120): 't1^-1', (2, 127): 'tau3*t2^-1', (2, 114): 't3^-1', (2, 115): 't3^-1', (2, 236): 't1^-1*tau3^-1*t2', (2, 237): 't1^-1*tau3^-1*t2', (2, 232): 'tau2^-1*t3^-1', (2, 233): 'tau2^-1*t3^-1', (1, 47): 't1', (2, 235): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 97): 'tau2^-1*t3^-1', (1, 167): 't1', (2, 222): 'tau2*t3', (2, 216): 't1', (2, 215): 't1', (2, 210): 't1', (2, 68): 't3*tau2'}