U-tiling: UQC5968
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2408 |
*22222 |
(6,7,2) |
{4,4,4,3,4,4} |
{7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc12260
|
|
P4/mmm |
123 |
tetragonal |
{4,4,4,3,4,4} |
32 |
(6,7) |
G
|
False
|
|
sqc12261
|
|
I4122 |
98 |
tetragonal |
{4,4,4,3,4,4} |
32 |
(6,8) |
D
|
False
|
|
sqc7082
|
|
P4222 |
93 |
tetragonal |
{4,4,4,4,3,4} |
16 |
(6,7) |
Topological data
Vertex degrees | {4,4,4,3,4,4} |
2D vertex symbol | {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<33.5:240:16 3 5 7 9 11 13 15 18 20 22 24 26 28 30 46 33 35 37 39 41 43 45 48 50 52 54 56 58 60 106 63 65 67 69 71 73 75 136 78 80 82 84 86 88 90 151 93 95 97 99 101 103 105 108 110 112 114 116 118 120 166 123 125 127 129 131 133 135 138 140 142 144 146 148 150 153 155 157 159 161 163 165 168 170 172 174 176 178 180 196 183 185 187 189 191 193 195 198 200 202 204 206 208 210 226 213 215 217 219 221 223 225 228 230 232 234 236 238 240,2 4 6 22 10 15 12 14 17 19 21 25 30 27 29 32 34 36 52 40 45 42 44 47 49 51 55 60 57 59 62 64 66 112 70 75 72 74 77 79 81 142 85 90 87 89 92 94 96 157 100 105 102 104 107 109 111 115 120 117 119 122 124 126 172 130 135 132 134 137 139 141 145 150 147 149 152 154 156 160 165 162 164 167 169 171 175 180 177 179 182 184 186 202 190 195 192 194 197 199 201 205 210 207 209 212 214 216 232 220 225 222 224 227 229 231 235 240 237 239,31 62 63 139 140 8 9 145 146 42 43 29 30 46 77 78 109 110 23 24 115 116 57 58 92 93 169 170 38 39 175 176 59 60 122 123 154 155 53 54 160 161 91 199 200 68 69 205 206 102 103 119 120 121 184 185 83 84 190 191 132 133 149 150 229 230 98 99 235 236 164 165 151 182 183 113 114 162 163 214 215 128 129 220 221 179 180 166 197 198 143 144 177 178 212 213 158 159 227 228 173 174 211 188 189 222 223 209 210 226 203 204 237 238 218 219 239 240 233 234:7 4 4 7 4 4 7 4 7 4 7 4 4 7 4 4 4 4 7 4 4 7 4 4,4 4 4 3 4 4 4 4 4 4 4 4 3 4 4 4 3 4 4 4 3 4 4 4 3 4 4 3 4 3 4 3> {(2, 191): 't2*tau3^-1*t1^-1', (0, 60): 't3', (1, 126): 'tau3', (2, 180): 't3^-1*tau2^-1', (2, 178): 'tau3^-1', (2, 179): 'tau3^-1', (2, 45): 't1', (2, 174): 't1', (2, 175): 't1', (2, 168): 't1', (2, 169): 't1', (1, 111): 't3^-1', (0, 45): 't1', (2, 164): 'tau2', (2, 165): 'tau3^-1*t2', (2, 166): 't1', (2, 167): 't1', (2, 163): 'tau2', (1, 201): 'tau1', (1, 216): 'tau2*t3*tau1^-1*t2^-1*tau3*t1', (2, 58): 't1', (1, 81): 't2', (2, 149): 't2^-1', (2, 150): 'tau2*t3', (2, 59): 't1', (2, 12): 't1', (2, 46): 't1', (2, 132): 'tau3*t2^-1', (2, 129): 't1^-1', (2, 130): 't1^-1', (2, 131): 'tau3*t2^-1', (0, 120): 'tau3', (2, 118): 't3^-1', (1, 51): 't1', (2, 119): 't3^-1', (2, 236): 'tau2^-1*t3^-1', (2, 237): 'tau2^-1*t3^-1', (2, 238): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 239): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 180): 'tau1^-1', (2, 101): 'tau2^-1*t3^-1', (2, 102): 'tau2^-1*t3^-1', (0, 225): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 225): 't1^-1*tau3^-1*t2', (0, 90): 'tau2^-1', (2, 222): 't1*tau3*t2^-1', (2, 88): 't2', (1, 156): 'tau2', (2, 213): 't1', (2, 214): 't1', (2, 208): 'tau1', (2, 209): 'tau1', (0, 75): 't2', (2, 47): 't1', (2, 41): 't1^-1'}