h-net: hqc2408


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(6,7,2)
Vertex degrees{4,4,4,3,4,4}
2D vertex symbol {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4}{4.4.4.4}{4.4.4.4}
Delaney-Dress Symbol <2408.2:15:1 3 5 7 9 11 13 15,2 4 6 7 10 15 12 14,1 2 3 4 5 8 9 10 11 12 13 14 15:7 4,4 4 4 3 4 4>
Dual net hqc2398

Derived s-nets

s-nets with faithful topology

20 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc7169 Fmmm 69 orthorhombic {4,3,4,4,4,4} 16 (6,7)
Full image sqc7341 Fmmm 69 orthorhombic {3,4,4,4,4,4} 16 (6,7)
Full image sqc12260 P4/mmm 123 tetragonal {4,4,4,3,4,4} 32 (6,7)
Full image sqc12076 I4122 98 tetragonal {4,4,4,3,4,4} 32 (6,8)
Full image sqc12077 Fddd 70 orthorhombic {4,4,4,3,4,4} 32 (6,8)
Full image sqc12078 I4122 98 tetragonal {4,4,4,3,4,4} 32 (6,8)
Full image sqc12079 Fddd 70 orthorhombic {4,4,4,3,4,4} 32 (6,8)
Full image sqc12080 Fddd 70 orthorhombic {4,4,4,3,4,4} 32 (6,8)
Full image sqc12088 I4122 98 tetragonal {4,4,4,3,4,4} 32 (6,8)
Full image sqc12230 I4122 98 tetragonal {4,4,4,3,4,4} 32 (6,8)
Full image sqc12254 Fddd 70 orthorhombic {4,4,4,3,4,4} 32 (6,8)
Full image sqc12255 Fddd 70 orthorhombic {4,4,4,3,4,4} 32 (6,8)
Full image sqc12261 I4122 98 tetragonal {4,4,4,3,4,4} 32 (6,8)
Full image sqc1495 Pmmm 47 orthorhombic {3,4,4,4,4,4} 8 (6,7)
Full image sqc7020 P4222 93 tetragonal {4,4,3,4,4,4} 16 (6,7)
Full image sqc7040 P4222 93 tetragonal {4,4,4,4,3,4} 16 (6,7)
Full image sqc7082 P4222 93 tetragonal {4,4,4,4,3,4} 16 (6,7)
Full image sqc7342 Cmma 67 orthorhombic {3,4,4,4,4,4} 16 (6,7)
Full image sqc7383 Cmma 67 orthorhombic {3,4,4,4,4,4} 16 (6,7)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC5960 *22222a (6,7,2) {4,4,4,3,4,4} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... No s‑net Snet sqc12230 No s‑net
Tiling details UQC5961 *22222a (6,7,2) {4,4,4,3,4,4} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... Snet sqc12045 Snet sqc12076 Snet sqc7020
Tiling details UQC5962 *22222b (6,7,2) {4,4,4,3,4,4} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... No s‑net Snet sqc12077 No s‑net
Tiling details UQC5963 *22222b (6,7,2) {4,4,4,3,4,4} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... Snet sqc6987 Snet sqc12079 Snet sqc7383
Tiling details UQC5964 *22222a (6,7,2) {4,4,4,3,4,4} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... No s‑net Snet sqc12078 No s‑net
Tiling details UQC5965 *22222b (6,7,2) {4,4,4,3,4,4} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... Snet sqc7169 Snet sqc12080 Snet sqc1495
Tiling details UQC5966 *22222b (6,7,2) {4,4,4,3,4,4} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... Snet sqc7341 Snet sqc12254 Snet sqc1495
Tiling details UQC5967 *22222b (6,7,2) {4,4,4,3,4,4} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... Snet sqc1495 Snet sqc12255 Snet sqc7342
Tiling details UQC5968 *22222a (6,7,2) {4,4,4,3,4,4} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... Snet sqc12260 Snet sqc12261 Snet sqc7082
Tiling details UQC5969 *22222a (6,7,2) {4,4,4,3,4,4} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... Snet sqc12046 Snet sqc12088 Snet sqc7040

Symmetry-lowered hyperbolic tilings