Orbifold symbol | *22222 |
Transitivity (vertex, edge, ring) | (6,7,2) |
Vertex degrees | {4,4,4,3,4,4} |
2D vertex symbol | {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4}{4.4.4.4}{4.4.4.4} |
Delaney-Dress Symbol | <2408.2:15:1 3 5 7 9 11 13 15,2 4 6 7 10 15 12 14,1 2 3 4 5 8 9 10 11 12 13 14 15:7 4,4 4 4 3 4 4> |
Dual net | hqc2398 |
Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
---|---|---|---|---|---|---|---|---|
sqc7169 | Fmmm | 69 | orthorhombic | {4,3,4,4,4,4} | 16 | (6,7) | ||
sqc7341 | Fmmm | 69 | orthorhombic | {3,4,4,4,4,4} | 16 | (6,7) | ||
sqc12260 | P4/mmm | 123 | tetragonal | {4,4,4,3,4,4} | 32 | (6,7) | ||
sqc12076 | I4122 | 98 | tetragonal | {4,4,4,3,4,4} | 32 | (6,8) | ||
sqc12077 | Fddd | 70 | orthorhombic | {4,4,4,3,4,4} | 32 | (6,8) | ||
sqc12078 | I4122 | 98 | tetragonal | {4,4,4,3,4,4} | 32 | (6,8) | ||
sqc12079 | Fddd | 70 | orthorhombic | {4,4,4,3,4,4} | 32 | (6,8) | ||
sqc12080 | Fddd | 70 | orthorhombic | {4,4,4,3,4,4} | 32 | (6,8) | ||
sqc12088 | I4122 | 98 | tetragonal | {4,4,4,3,4,4} | 32 | (6,8) | ||
sqc12230 | I4122 | 98 | tetragonal | {4,4,4,3,4,4} | 32 | (6,8) | ||
sqc12254 | Fddd | 70 | orthorhombic | {4,4,4,3,4,4} | 32 | (6,8) | ||
sqc12255 | Fddd | 70 | orthorhombic | {4,4,4,3,4,4} | 32 | (6,8) | ||
sqc12261 | I4122 | 98 | tetragonal | {4,4,4,3,4,4} | 32 | (6,8) | ||
sqc1495 | Pmmm | 47 | orthorhombic | {3,4,4,4,4,4} | 8 | (6,7) | ||
sqc7020 | P4222 | 93 | tetragonal | {4,4,3,4,4,4} | 16 | (6,7) | ||
sqc7040 | P4222 | 93 | tetragonal | {4,4,4,4,3,4} | 16 | (6,7) | ||
sqc7082 | P4222 | 93 | tetragonal | {4,4,4,4,3,4} | 16 | (6,7) | ||
sqc7342 | Cmma | 67 | orthorhombic | {3,4,4,4,4,4} | 16 | (6,7) | ||
sqc7383 | Cmma | 67 | orthorhombic | {3,4,4,4,4,4} | 16 | (6,7) |
Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
---|---|---|---|---|---|---|---|---|
UQC5960 | *22222a | (6,7,2) | {4,4,4,3,4,4} | {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... | No s‑net | sqc12230 | No s‑net | |
UQC5961 | *22222a | (6,7,2) | {4,4,4,3,4,4} | {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... | sqc12045 | sqc12076 | sqc7020 | |
UQC5962 | *22222b | (6,7,2) | {4,4,4,3,4,4} | {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... | No s‑net | sqc12077 | No s‑net | |
UQC5963 | *22222b | (6,7,2) | {4,4,4,3,4,4} | {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... | sqc6987 | sqc12079 | sqc7383 | |
UQC5964 | *22222a | (6,7,2) | {4,4,4,3,4,4} | {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... | No s‑net | sqc12078 | No s‑net | |
UQC5965 | *22222b | (6,7,2) | {4,4,4,3,4,4} | {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... | sqc7169 | sqc12080 | sqc1495 | |
UQC5966 | *22222b | (6,7,2) | {4,4,4,3,4,4} | {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... | sqc7341 | sqc12254 | sqc1495 | |
UQC5967 | *22222b | (6,7,2) | {4,4,4,3,4,4} | {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... | sqc1495 | sqc12255 | sqc7342 | |
UQC5968 | *22222a | (6,7,2) | {4,4,4,3,4,4} | {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... | sqc12260 | sqc12261 | sqc7082 | |
UQC5969 | *22222a | (6,7,2) | {4,4,4,3,4,4} | {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... | sqc12046 | sqc12088 | sqc7040 |