U-tiling: UQC6029
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2434 |
*22222 |
(6,7,2) |
{4,4,8,4,4,4} |
{3.3.3.3}{3.5.5.3}{3.5.5.3.3.5.5... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc12350
|
|
P4/mmm |
123 |
tetragonal |
{4,4,8,4,4,4} |
28 |
(6,7) |
G
|
False
|
|
sqc12348
|
|
I4122 |
98 |
tetragonal |
{4,4,8,4,4,4} |
28 |
(6,8) |
D
|
False
|
|
sqc7605
|
|
P4222 |
93 |
tetragonal |
{4,4,4,4,4,8} |
14 |
(6,7) |
Topological data
Vertex degrees | {4,4,8,4,4,4} |
2D vertex symbol | {3.3.3.3}{3.5.5.3}{3.5.5.3.3.5.5.3}{5.5.5.5}{5.5.5.5}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<2.1:256:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256,3 6 5 9 16 11 13 15 19 22 21 25 32 27 29 31 35 38 37 41 48 43 45 47 51 54 53 57 64 59 61 63 67 70 69 73 80 75 77 79 83 86 85 89 96 91 93 95 99 102 101 105 112 107 109 111 115 118 117 121 128 123 125 127 131 134 133 137 144 139 141 143 147 150 149 153 160 155 157 159 163 166 165 169 176 171 173 175 179 182 181 185 192 187 189 191 195 198 197 201 208 203 205 207 211 214 213 217 224 219 221 223 227 230 229 233 240 235 237 239 243 246 245 249 256 251 253 255,33 34 67 68 7 8 153 154 43 44 29 30 47 48 49 50 83 84 23 24 121 122 59 60 63 64 99 100 39 40 185 186 61 62 131 132 55 56 169 170 97 98 71 72 217 218 107 108 125 126 111 112 129 130 87 88 201 202 139 140 157 158 143 144 103 104 249 250 173 174 161 162 195 196 119 120 171 172 175 176 135 136 233 234 189 190 177 178 211 212 151 152 187 188 191 192 227 228 167 168 243 244 183 184 225 226 199 200 235 236 221 222 239 240 241 242 215 216 251 252 255 256 231 232 253 254 247 248:3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5,4 4 8 4 4 4 4 4 8 4 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 188): 'tau3^-1', (2, 189): 'tau3^-1', (2, 190): 'tau3^-1*t2', (2, 191): 'tau3^-1*t2', (2, 184): 't1', (2, 185): 't1', (2, 61): 't1', (2, 107): 'tau2^-1*t3^-1', (2, 176): 'tau3^-1*t2', (2, 177): 'tau3^-1*t2', (2, 178): 't1', (2, 179): 't1', (2, 172): 'tau2', (2, 173): 'tau2', (2, 174): 'tau2*t3', (2, 175): 'tau2*t3', (2, 42): 't1^-1', (2, 43): 't1^-1', (2, 60): 't1', (2, 160): 'tau2*t3', (2, 161): 'tau2*t3', (2, 156): 't2^-1', (2, 157): 't2^-1', (2, 124): 't3^-1', (2, 106): 'tau2^-1*t3^-1', (2, 136): 't1^-1', (2, 137): 't1^-1', (2, 138): 'tau3*t2^-1', (2, 139): 'tau3*t2^-1', (2, 62): 't1', (2, 125): 't3^-1', (2, 130): 't1^-1', (2, 131): 't1^-1', (2, 252): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 253): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 254): 't1^-1*tau3^-1*t2', (2, 255): 't1^-1*tau3^-1*t2', (2, 250): 'tau2^-1*t3^-1', (2, 251): 'tau2^-1*t3^-1', (2, 48): 't1', (2, 240): 't1^-1*tau3^-1*t2', (2, 241): 't1^-1*tau3^-1*t2', (2, 49): 't1', (2, 238): 'tau2*t3', (2, 239): 'tau2*t3', (2, 234): 't1*tau3*t2^-1', (2, 235): 't1*tau3*t2^-1', (2, 224): 'tau2*t3', (2, 225): 'tau2*t3', (2, 220): 'tau1', (2, 221): 'tau1', (2, 63): 't1'}