U-tiling: UQC6032
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2434 |
*22222 |
(6,7,2) |
{4,4,8,4,4,4} |
{3.3.3.3}{3.5.5.3}{3.5.5.3.3.5.5... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc12321
|
|
P4/mmm |
123 |
tetragonal |
{4,4,8,4,4,4} |
28 |
(6,7) |
G
|
False
|
|
sqc12342
|
|
I4122 |
98 |
tetragonal |
{4,4,8,4,4,4} |
28 |
(6,8) |
D
|
False
|
|
sqc7903
|
|
P4222 |
93 |
tetragonal |
{4,8,4,4,4,4} |
14 |
(6,7) |
Topological data
Vertex degrees | {4,4,8,4,4,4} |
2D vertex symbol | {3.3.3.3}{3.5.5.3}{3.5.5.3.3.5.5.3}{5.5.5.5}{5.5.5.5}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<2.3:256:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256,3 6 5 9 16 11 13 15 19 22 21 25 32 27 29 31 35 38 37 41 48 43 45 47 51 54 53 57 64 59 61 63 67 70 69 73 80 75 77 79 83 86 85 89 96 91 93 95 99 102 101 105 112 107 109 111 115 118 117 121 128 123 125 127 131 134 133 137 144 139 141 143 147 150 149 153 160 155 157 159 163 166 165 169 176 171 173 175 179 182 181 185 192 187 189 191 195 198 197 201 208 203 205 207 211 214 213 217 224 219 221 223 227 230 229 233 240 235 237 239 243 246 245 249 256 251 253 255,145 146 35 36 7 8 25 26 43 44 77 78 159 160 113 114 51 52 23 24 59 60 93 94 127 128 177 178 39 40 57 58 109 110 191 192 161 162 55 56 141 142 175 176 209 210 99 100 71 72 121 122 107 108 223 224 193 194 131 132 87 88 153 154 139 140 207 208 241 242 103 104 169 170 255 256 163 164 119 120 171 172 205 206 225 226 135 136 185 186 239 240 179 180 151 152 187 188 221 222 167 168 237 238 183 184 253 254 227 228 199 200 217 218 235 236 243 244 215 216 251 252 231 232 249 250 247 248:3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5,4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 8 4 4 4 8 4 4 4 4 4 8 4> {(2, 188): 't1', (2, 189): 't1', (2, 190): 't1', (2, 191): 't1', (2, 184): 'tau3^-1', (2, 185): 'tau3^-1', (2, 186): 'tau3^-1*t2', (2, 187): 'tau3^-1*t2', (2, 176): 't1', (2, 177): 't1', (2, 121): 't3^-1', (2, 168): 'tau2', (2, 169): 'tau2', (2, 170): 'tau2*t3', (2, 171): 'tau2*t3', (2, 56): 't1', (2, 34): 't1^-1', (2, 57): 't1', (2, 152): 't2^-1', (2, 153): 't2^-1', (2, 59): 't1', (2, 140): 't1^-1', (2, 141): 't1^-1', (2, 142): 't1^-1', (2, 143): 't1^-1', (2, 98): 'tau2^-1*t3^-1', (2, 35): 't1^-1', (2, 128): 't1^-1', (2, 129): 't1^-1', (2, 130): 'tau3*t2^-1', (2, 131): 'tau3*t2^-1', (2, 248): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 249): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 250): 't1^-1*tau3^-1*t2', (2, 251): 't1^-1*tau3^-1*t2', (2, 242): 'tau2^-1*t3^-1', (2, 243): 'tau2^-1*t3^-1', (2, 234): 'tau2*t3', (2, 235): 'tau2*t3', (2, 99): 'tau2^-1*t3^-1', (2, 226): 't1*tau3*t2^-1', (2, 227): 't1*tau3*t2^-1', (2, 216): 'tau1', (2, 217): 'tau1', (2, 58): 't1', (2, 120): 't3^-1'}