U-tiling: UQC6037
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2434 |
*22222 |
(6,7,2) |
{4,4,8,4,4,4} |
{3.3.3.3}{3.5.5.3}{3.5.5.3.3.5.5... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc12378
|
|
P4/mmm |
123 |
tetragonal |
{4,4,8,4,4,4} |
28 |
(6,7) |
G
|
False
|
|
sqc12379
|
|
I4122 |
98 |
tetragonal |
{4,4,8,4,4,4} |
28 |
(6,8) |
D
|
False
|
|
sqc7902
|
|
P4222 |
93 |
tetragonal |
{4,8,4,4,4,4} |
14 |
(6,7) |
Topological data
Vertex degrees | {4,4,8,4,4,4} |
2D vertex symbol | {3.3.3.3}{3.5.5.3}{3.5.5.3.3.5.5.3}{5.5.5.5}{5.5.5.5}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<2.5:256:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256,3 6 5 9 16 11 13 15 19 22 21 25 32 27 29 31 35 38 37 41 48 43 45 47 51 54 53 57 64 59 61 63 67 70 69 73 80 75 77 79 83 86 85 89 96 91 93 95 99 102 101 105 112 107 109 111 115 118 117 121 128 123 125 127 131 134 133 137 144 139 141 143 147 150 149 153 160 155 157 159 163 166 165 169 176 171 173 175 179 182 181 185 192 187 189 191 195 198 197 201 208 203 205 207 211 214 213 217 224 219 221 223 227 230 229 233 240 235 237 239 243 246 245 249 256 251 253 255,17 18 35 36 7 8 73 74 155 156 45 46 31 32 51 52 23 24 89 90 123 124 61 62 49 50 39 40 105 106 187 188 63 64 55 56 137 138 171 172 113 114 99 100 71 72 219 220 109 110 127 128 145 146 131 132 87 88 203 204 141 142 159 160 161 162 103 104 251 252 175 176 163 164 119 120 201 202 173 174 177 178 135 136 235 236 191 192 179 180 151 152 217 218 189 190 167 168 233 234 183 184 249 250 209 210 227 228 199 200 237 238 223 224 243 244 215 216 253 254 241 242 231 232 255 256 247 248:3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5,4 4 8 4 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 8 4 8 4 4 4 4> {(2, 190): 'tau3^-1', (2, 191): 'tau3^-1', (2, 184): 't1', (2, 185): 't1', (2, 186): 't1', (2, 187): 't1', (2, 176): 'tau3^-1', (2, 177): 'tau3^-1', (2, 178): 'tau3^-1*t2', (2, 179): 'tau3^-1*t2', (2, 44): 't1^-1', (2, 45): 't1^-1', (2, 174): 'tau2', (2, 175): 'tau2', (2, 160): 'tau2', (2, 161): 'tau2', (2, 162): 'tau2*t3', (2, 163): 'tau2*t3', (2, 49): 't1', (2, 158): 't2^-1', (2, 159): 't2^-1', (2, 144): 't2^-1', (2, 145): 't2^-1', (2, 140): 'tau3*t2^-1', (2, 141): 'tau3*t2^-1', (2, 112): 't3^-1', (2, 136): 't1^-1', (2, 137): 't1^-1', (2, 138): 't1^-1', (2, 139): 't1^-1', (2, 252): 'tau2^-1*t3^-1', (2, 253): 'tau2^-1*t3^-1', (2, 254): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 255): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 48): 't1', (2, 240): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 241): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 242): 't1^-1*tau3^-1*t2', (2, 243): 't1^-1*tau3^-1*t2', (2, 236): 't1*tau3*t2^-1', (2, 237): 't1*tau3*t2^-1', (2, 50): 't1', (2, 62): 't1', (2, 126): 't3^-1', (2, 51): 't1', (2, 226): 'tau2*t3', (2, 227): 'tau2*t3', (2, 108): 'tau2^-1*t3^-1', (2, 222): 'tau1', (2, 223): 'tau1', (2, 109): 'tau2^-1*t3^-1', (2, 208): 'tau1', (2, 209): 'tau1', (2, 113): 't3^-1', (2, 63): 't1', (2, 127): 't3^-1'}