U-tiling: UQC6038
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2434 |
*22222 |
(6,7,2) |
{4,4,8,4,4,4} |
{3.3.3.3}{3.5.5.3}{3.5.5.3.3.5.5... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc12318
|
|
P4/mmm |
123 |
tetragonal |
{4,4,8,4,4,4} |
28 |
(6,7) |
G
|
False
|
|
sqc12317
|
|
I4122 |
98 |
tetragonal |
{4,4,8,4,4,4} |
28 |
(6,8) |
D
|
False
|
|
sqc7702
|
|
P4222 |
93 |
tetragonal |
{4,8,4,4,4,4} |
14 |
(6,7) |
Topological data
Vertex degrees | {4,4,8,4,4,4} |
2D vertex symbol | {3.3.3.3}{3.5.5.3}{3.5.5.3.3.5.5.3}{5.5.5.5}{5.5.5.5}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<2.4:256:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256,3 6 5 9 16 11 13 15 19 22 21 25 32 27 29 31 35 38 37 41 48 43 45 47 51 54 53 57 64 59 61 63 67 70 69 73 80 75 77 79 83 86 85 89 96 91 93 95 99 102 101 105 112 107 109 111 115 118 117 121 128 123 125 127 131 134 133 137 144 139 141 143 147 150 149 153 160 155 157 159 163 166 165 169 176 171 173 175 179 182 181 185 192 187 189 191 195 198 197 201 208 203 205 207 211 214 213 217 224 219 221 223 227 230 229 233 240 235 237 239 243 246 245 249 256 251 253 255,33 34 19 20 7 8 41 42 75 76 157 158 47 48 49 50 23 24 57 58 91 92 125 126 63 64 51 52 39 40 107 108 189 190 55 56 139 140 173 174 97 98 115 116 71 72 105 106 221 222 111 112 129 130 147 148 87 88 137 138 205 206 143 144 163 164 103 104 253 254 161 162 119 120 169 170 203 204 175 176 179 180 135 136 237 238 177 178 151 152 185 186 219 220 191 192 167 168 235 236 183 184 251 252 225 226 211 212 199 200 233 234 239 240 241 242 215 216 249 250 255 256 243 244 231 232 247 248:3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5,4 4 8 4 4 4 4 4 4 4 4 4 4 4 8 4 4 4 8 4 4 4 4 4 4 4 8 4> {(2, 188): 't1', (2, 189): 't1', (2, 97): 'tau2^-1*t3^-1', (2, 184): 'tau3^-1*t2', (2, 185): 'tau3^-1*t2', (2, 186): 't1', (2, 187): 't1', (2, 57): 't1', (2, 178): 'tau3^-1', (2, 179): 'tau3^-1', (2, 46): 't1^-1', (2, 47): 't1^-1', (2, 168): 'tau2*t3', (2, 169): 'tau2*t3', (2, 56): 't1', (2, 32): 't1^-1', (2, 33): 't1^-1', (2, 162): 'tau2', (2, 163): 'tau2', (2, 96): 'tau2^-1*t3^-1', (2, 146): 't2^-1', (2, 147): 't2^-1', (2, 140): 't1^-1', (2, 141): 't1^-1', (2, 142): 'tau3*t2^-1', (2, 143): 'tau3*t2^-1', (2, 138): 't1^-1', (2, 139): 't1^-1', (2, 128): 'tau3*t2^-1', (2, 129): 'tau3*t2^-1', (2, 50): 't1', (2, 114): 't3^-1', (2, 254): 'tau2^-1*t3^-1', (2, 255): 'tau2^-1*t3^-1', (2, 248): 't1^-1*tau3^-1*t2', (2, 249): 't1^-1*tau3^-1*t2', (2, 240): 'tau2^-1*t3^-1', (2, 241): 'tau2^-1*t3^-1', (2, 242): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 243): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 238): 't1*tau3*t2^-1', (2, 239): 't1*tau3*t2^-1', (2, 232): 'tau2*t3', (2, 233): 'tau2*t3', (2, 51): 't1', (2, 224): 't1*tau3*t2^-1', (2, 225): 't1*tau3*t2^-1', (2, 115): 't3^-1', (2, 110): 'tau2^-1*t3^-1', (2, 210): 'tau1', (2, 211): 'tau1', (2, 111): 'tau2^-1*t3^-1'}