U-tiling: UQC6057
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2443 |
*222222 |
(7,8,2) |
{4,3,4,4,4,4,4} |
{3.7.7.3}{3.7.7}{7.7.7.7}{7.7.7.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc2259
|
|
Pmmm |
47 |
orthorhombic |
{4,4,4,4,3,4,4} |
9 |
(7,8) |
G
|
False
|
|
sqc8375
|
|
C2/c |
15 |
monoclinic |
{4,3,4,4,4,4,4} |
18 |
(7,9) |
D
|
False
|
|
sqc8378
|
|
Imma |
74 |
orthorhombic |
{4,3,4,4,4,4,4} |
18 |
(7,8) |
Topological data
Vertex degrees | {4,3,4,4,4,4,4} |
2D vertex symbol | {3.7.7.3}{3.7.7}{7.7.7.7}{7.7.7.7}{7.7.7.7}{7.7.7.7}{7.7.7.7} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<49.3:136:69 3 5 7 9 11 13 15 17 103 20 22 24 26 28 30 32 34 120 37 39 41 43 45 47 49 51 86 54 56 58 60 62 64 66 68 71 73 75 77 79 81 83 85 88 90 92 94 96 98 100 102 105 107 109 111 113 115 117 119 122 124 126 128 130 132 134 136,2 71 6 17 8 10 12 14 16 19 105 23 34 25 27 29 31 33 36 122 40 51 42 44 46 48 50 53 88 57 68 59 61 63 65 67 70 74 85 76 78 80 82 84 87 91 102 93 95 97 99 101 104 108 119 110 112 114 116 118 121 125 136 127 129 131 133 135,86 4 5 91 92 76 77 44 45 29 30 48 49 84 85 120 21 22 125 126 110 111 61 62 65 66 118 119 103 38 39 108 109 127 128 63 64 135 136 69 55 56 74 75 93 94 101 102 72 73 129 130 114 115 133 134 89 90 112 113 131 132 116 117 106 107 123 124:3 7 3 7 3 7 3 7 7 7 7 7,4 3 4 4 4 4 4 4 3 4 4 4 4 3 4 3 4 4> {(1, 121): 't2^-1*tau3', (0, 17): 'tau3*t2^-1', (2, 56): 't3^-1', (2, 57): 't3^-1', (0, 51): 'tau2*t3', (2, 48): 't1', (2, 49): 'tau3^-1*t2', (2, 50): 'tau3^-1*t2', (2, 51): 't3^-1', (1, 104): 't2*tau3^-1', (2, 47): 't1', (2, 40): 't2^-1', (0, 34): 'tau3^-1*t2', (2, 39): 't2^-1', (2, 32): 'tau3*t2^-1', (2, 33): 'tau3*t2^-1', (2, 34): 't2^-1', (2, 30): 't1^-1', (2, 31): 't1^-1', (2, 22): 't2', (2, 23): 't2', (2, 16): 'tau2^-1*t3^-1', (2, 17): 't2', (1, 87): 't3^-1*tau2^-1', (2, 132): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 5): 't3', (0, 0): 'tau2^-1*t3^-1', (2, 0): 't3', (2, 131): 'tau1', (2, 116): 't2*tau3^-1*t1^-1*tau2*t3', (2, 113): 'tau1^-1', (2, 114): 'tau1^-1', (2, 115): 't2*tau3^-1*t1^-1*tau2*t3', (2, 133): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 100): 't3^-1*tau2^-1', (2, 101): 't3^-1*tau2^-1', (2, 96): 'tau1^-1', (2, 6): 't3', (2, 83): 't3*tau2', (1, 70): 't3*tau2'}