U-tiling: UQC6058
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2443 |
*222222 |
(7,8,2) |
{4,3,4,4,4,4,4} |
{3.7.7.3}{3.7.7}{7.7.7.7}{7.7.7.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc8365
|
|
Pmmm |
47 |
orthorhombic |
{4,3,4,4,4,4,4} |
18 |
(7,8) |
G
|
False
|
|
sqc8364
|
|
I212121 |
24 |
orthorhombic |
{4,3,4,4,4,4,4} |
18 |
(7,9) |
D
|
False
|
|
sqc2258
|
|
Pmmm |
47 |
orthorhombic |
{4,4,4,4,4,3,4} |
9 |
(7,8) |
Topological data
Vertex degrees | {4,3,4,4,4,4,4} |
2D vertex symbol | {3.7.7.3}{3.7.7}{7.7.7.7}{7.7.7.7}{7.7.7.7}{7.7.7.7}{7.7.7.7} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<49.1:136:18 3 5 7 9 11 13 15 17 20 22 24 26 28 30 32 34 52 37 39 41 43 45 47 49 51 54 56 58 60 62 64 66 68 86 71 73 75 77 79 81 83 85 88 90 92 94 96 98 100 102 120 105 107 109 111 113 115 117 119 122 124 126 128 130 132 134 136,2 20 6 17 8 10 12 14 16 19 23 34 25 27 29 31 33 36 54 40 51 42 44 46 48 50 53 57 68 59 61 63 65 67 70 88 74 85 76 78 80 82 84 87 91 102 93 95 97 99 101 104 122 108 119 110 112 114 116 118 121 125 136 127 129 131 133 135,35 4 5 40 41 76 77 27 28 46 47 82 83 33 34 52 21 22 57 58 93 94 63 64 99 100 38 39 110 111 61 62 116 117 67 68 55 56 127 128 133 134 103 72 73 108 109 95 96 114 115 101 102 120 89 90 125 126 131 132 106 107 129 130 135 136 123 124:3 7 7 3 7 7 3 7 7 3 7 7,4 3 4 4 4 4 4 4 4 4 3 4 4 4 3 4 4 3> {(1, 121): 't1^-1*tau3^-1*t2', (2, 61): 'tau2^-1*t3^-1', (2, 62): 'tau2^-1*t1', (2, 63): 'tau2^-1*t1', (2, 48): 't3*tau1^-1', (2, 46): 't3', (2, 47): 't3*tau1^-1', (2, 43): 't3*tau2', (2, 30): 'tau3', (2, 31): 'tau3', (2, 24): 't1^-1', (2, 25): 't1^-1', (2, 26): 't1^-1', (2, 27): 't1^-1', (1, 87): 'tau3^-1*t2', (2, 13): 't2', (2, 14): 't2', (2, 11): 't3^-1', (2, 132): 't1^-1*tau3^-1*t2*tau1*t3^-1', (2, 133): 't1^-1*tau3^-1*t2*tau1*t3^-1', (2, 134): 't1^-1*tau3^-1*t2', (2, 135): 't1^-1*tau3^-1*t2', (2, 128): 'tau2^-1*t3^-1', (2, 129): 'tau2^-1*t3^-1', (2, 124): 't1^-1', (2, 125): 't1^-1', (2, 119): 't1^-1', (2, 113): 'tau1*t2', (2, 114): 'tau1*t2', (0, 119): 't1^-1*tau3^-1*t2', (2, 100): 'tau3^-1*t2', (2, 101): 'tau3^-1*t2', (2, 96): 't2^-1*tau1^-1*t3*tau2', (2, 97): 't2^-1*tau1^-1*t3*tau2', (0, 85): 'tau3^-1*t2'}