U-tiling: UQC6084
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc2450 |
*222222 |
(7,8,2) |
{4,4,8,4,4,4,4} |
{3.3.3.3}{3.6.6.3}{3.6.6.3.3.6.6... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc2803
|
|
Pmmm |
47 |
orthorhombic |
{4,4,4,4,4,8,4} |
8 |
(7,8) |
G
|
False
|
|
sqc8639
|
|
C2/c |
15 |
monoclinic |
{4,4,8,4,4,4,4} |
16 |
(7,9) |
D
|
False
|
|
sqc8638
|
|
Imma |
74 |
orthorhombic |
{4,4,8,4,4,4,4} |
16 |
(7,8) |
Topological data
Vertex degrees | {4,4,8,4,4,4,4} |
2D vertex symbol | {3.3.3.3}{3.6.6.3}{3.6.6.3.3.6.6.3}{6.6.6.6}{6.6.6.6}{6.6.6.6}{6.6.6.6} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<3.3:144:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144,3 6 5 9 18 11 13 15 17 21 24 23 27 36 29 31 33 35 39 42 41 45 54 47 49 51 53 57 60 59 63 72 65 67 69 71 75 78 77 81 90 83 85 87 89 93 96 95 99 108 101 103 105 107 111 114 113 117 126 119 121 123 125 129 132 131 135 144 137 139 141 143,73 74 93 94 7 8 81 82 47 48 31 32 51 52 89 90 109 110 129 130 25 26 117 118 65 66 69 70 125 126 127 128 111 112 43 44 135 136 67 68 143 144 91 92 75 76 61 62 99 100 107 108 79 80 137 138 121 122 141 142 97 98 119 120 139 140 123 124 115 116 133 134:3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6,4 4 8 4 4 4 4 4 4 8 4 4 4 4 4 4> {(2, 56): 't3^-1', (2, 57): 't3^-1', (2, 52): 'tau3^-1*t2', (2, 53): 'tau3^-1*t2', (2, 54): 'tau2*t3', (2, 55): 'tau2*t3', (2, 50): 't1', (2, 51): 't1', (2, 36): 'tau3^-1*t2', (2, 37): 'tau3^-1*t2', (2, 38): 't2^-1', (2, 39): 't2^-1', (2, 32): 't1^-1', (2, 33): 't1^-1', (2, 34): 'tau3*t2^-1', (2, 35): 'tau3*t2^-1', (2, 20): 't2', (2, 21): 't2', (2, 16): 'tau2^-1*t3^-1', (2, 17): 'tau2^-1*t3^-1', (2, 18): 'tau3*t2^-1', (2, 19): 'tau3*t2^-1', (2, 140): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 138): 'tau1', (2, 139): 'tau1', (2, 0): 'tau2^-1*t3^-1', (2, 1): 'tau2^-1*t3^-1', (2, 2): 't3', (2, 3): 't3', (2, 120): 'tau1^-1', (2, 121): 'tau1^-1', (2, 122): 't2*tau3^-1*t1^-1*tau2*t3', (2, 123): 't2*tau3^-1*t1^-1*tau2*t3', (2, 106): 't3^-1*tau2^-1', (2, 107): 't3^-1*tau2^-1', (2, 87): 't3*tau2*t1^-1*tau3^-1*t2'}