U-tiling: UQC692
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc575 |
*222222 |
(2,5,3) |
{6,4} |
{4.4.8.8.4.4}{8.8.8.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc114
|
|
Pmmm |
47 |
orthorhombic |
{6,4} |
3 |
(2,5) |
G
|
False
|
|
sqc1696
|
|
C2/c |
15 |
monoclinic |
{4,6} |
6 |
(2,5) |
D
|
True
|
|
sqc1250
|
|
Imma |
74 |
orthorhombic |
{4,5} |
6 |
(2,5) |
Topological data
Vertex degrees | {6,4} |
2D vertex symbol | {4.4.8.8.4.4}{8.8.8.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<10.3:64:41 3 36 37 22 23 16 57 11 52 53 30 31 49 19 60 61 32 33 27 44 45 35 62 63 56 43 54 55 64 51 59,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64,33 18 19 5 7 24 49 26 27 13 15 32 57 21 23 41 29 31 58 59 37 39 64 50 51 45 47 56 53 55 61 63:8 4 4 8 4 4,4 6 4 6 6 6> {(2, 56): 't2^-1*tau3', (0, 55): 'tau1^-1', (2, 41): 't3^-1*tau2^-1*t1*tau3*t2^-1', (0, 48): 't2', (2, 32): 't3*tau2', (2, 57): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 50): 't2*tau3^-1*t1^-1*tau2*t3', (2, 17): 't1', (0, 56): 't2^-1', (2, 40): 't3^-1*tau2^-1', (2, 55): 't2*tau3^-1*t1^-1*tau2*t3', (2, 58): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 18): 't1', (0, 32): 't3', (2, 63): 't2^-1*tau3*t1*tau2^-1*t3^-1', (0, 47): 'tau1^-1', (2, 23): 't1', (2, 26): 't1', (0, 40): 't3^-1', (2, 48): 't2*tau3^-1', (2, 31): 't1', (2, 9): 't1^-1', }