U-tiling: UQC83
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc15 |
*24(12) |
(1,1,1) |
{4} |
{12.12.12.12} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc28
|
|
Pmmm |
47 |
orthorhombic |
{4,4,4} |
3 |
(3,4) |
G
|
False
|
|
sqc935
|
|
C2/c |
15 |
monoclinic |
{4,4,4} |
6 |
(3,4) |
D
|
False
|
|
sqc936
|
|
Imma |
74 |
orthorhombic |
{4,4,4} |
6 |
(3,4) |
Topological data
Vertex degrees | {4,4,4} |
2D vertex symbol | {12.12.12.12}{12.12.12.12}{12.12.12.12} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<1.1:48:7 3 5 18 9 11 24 19 15 17 21 23 37 27 29 48 43 33 35 42 39 41 45 47,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48,13 26 27 34 35 30 19 38 39 46 47 42 44 45 40 41 48 32 33 28 29 36 43 37:12 12,4 4 4 4 4 4> {(2, 44): 't2^-1*tau3', (2, 45): 't2^-1', (2, 46): 't2^-1', (2, 40): 't2', (2, 42): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 43): 't2^-1*tau3', (2, 36): 't2*tau3^-1*t1^-1*tau2*t3', (2, 37): 't2*tau3^-1', (2, 38): 't2*tau3^-1', (2, 39): 't2', (2, 32): 't3^-1*tau2^-1', (2, 33): 't3^-1', (0, 36): 'tau1^-1', (2, 28): 't3', (2, 31): 't3^-1*tau2^-1', (0, 30): 'tau1^-1', (2, 25): 't3*tau2', (2, 26): 't3*tau2', (2, 27): 't3', (2, 18): 't1', (2, 12): 't1', (2, 4): 't3'}