U-tiling: UQC955
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc705 |
*2323 |
(2,4,3) |
{5,3} |
{3.3.12.12.3}{3.12.12} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11118
|
|
P4232 |
208 |
cubic |
{5,3} |
24 |
(2,4) |
G
|
False
|
|
sqc11086
|
|
I213 |
199 |
cubic |
{3,5} |
24 |
(2,5) |
D
|
False
|
|
sqc11085
|
|
F-43m |
216 |
cubic |
{3,5} |
24 |
(2,4) |
Topological data
Vertex degrees | {5,3} |
2D vertex symbol | {3.3.12.12.3}{3.12.12} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<27.1:192:9 4 5 22 31 32 12 13 54 47 48 33 20 21 103 104 41 28 29 110 36 37 70 151 152 44 45 134 65 52 53 175 176 73 60 61 94 87 88 68 69 119 120 76 77 174 135 136 129 84 85 166 137 92 93 159 160 145 100 101 182 161 108 109 183 184 169 116 117 142 177 124 125 158 167 168 132 133 140 141 191 192 148 149 190 185 156 157 164 165 172 173 180 181 188 189,2 27 6 7 64 10 43 14 15 128 18 99 22 23 96 26 30 31 120 34 147 38 39 168 42 46 47 152 50 171 54 55 160 58 83 62 63 66 115 70 71 88 74 131 78 79 184 82 86 87 90 155 94 95 98 102 103 176 106 179 110 111 144 114 118 119 122 163 126 127 130 134 135 192 138 187 142 143 146 150 151 154 158 159 162 166 167 170 174 175 178 182 183 186 190 191,25 3 5 62 8 41 11 13 126 16 97 19 21 94 24 27 29 118 32 145 35 37 166 40 43 45 150 48 169 51 53 158 56 81 59 61 64 113 67 69 86 72 129 75 77 182 80 83 85 88 153 91 93 96 99 101 174 104 177 107 109 142 112 115 117 120 161 123 125 128 131 133 190 136 185 139 141 144 147 149 152 155 157 160 163 165 168 171 173 176 179 181 184 187 189 192:12 3 3 3 3 3 3 12 3 3 12 3 3 3 3 3 12 3 3 3,3 5 3 5 3 5 5 3 5 5 3 5 3 3 5 3 5 3 5 3 5 3 5 3> {(0, 167): 't3^-1', (1, 162): 't3^-1', (0, 190): 't2^-1', (2, 77): 't2^-1', (2, 72): 'tau3^-1*t1^-1', (0, 159): 't2^-1', (2, 173): 't2^-1', (2, 56): 't1^-1', (2, 45): 't3', (0, 134): 't1*tau3', (1, 79): 't2^-1', (0, 183): 'tau1^-1*t3*tau2', (0, 160): 'tau2', (0, 45): 'tau2^-1', (0, 166): 't3^-1', (1, 90): 't2', (1, 103): 't2', (1, 106): 'tau2^-1*t3^-1*tau1', (2, 136): 't2', (2, 189): 'tau1*t3^-1*tau2^-1', (0, 182): 'tau1^-1*t3*tau2', (0, 176): 'tau1^-1', (0, 189): 'tau1', (2, 160): 't3^-1', (1, 74): 'tau3^-1*t1^-1', (1, 119): 't1', (0, 63): 't1^-1', (0, 158): 't2^-1', (2, 141): 'tau3*t1', (1, 111): 't1^-1*tau3^-1', (1, 82): 't1', (1, 186): 't2^-1', (0, 141): 'tau3', (2, 176): 'tau1^-1*t3*tau2', (0, 62): 't1^-1', (0, 143): 't2', (0, 56): 'tau3', (0, 79): 'tau3^-1*t1^-1', (2, 29): 't1^-1', (1, 47): 't3', (2, 88): 't2', (1, 191): 'tau1*t3^-1*tau2^-1', }