# P222

Number16
Symmetry Classorthorhombic
ChiralY

# s-nets

180 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
sqc786 P222 16 orthorhombic {4,4,8,4} 5 (4,6)
sqc825 P222 16 orthorhombic {4,4,4,4} 6 (4,7)
sqc826 P222 16 orthorhombic {3,3,4,4,4} 7 (5,6)
sqc859 P222 16 orthorhombic {10,4} 3 (2,6)
sqc862 P222 16 orthorhombic {4,10} 3 (2,6)
sqc863 P222 16 orthorhombic {9,6} 3 (2,6)
sqc902 P222 16 orthorhombic {6,3} 6 (2,6)
sqc913 P222 16 orthorhombic {4,4,4,3,6} 6 (5,6)
sqc953 P222 16 orthorhombic {4,4,4,4,4} 6 (5,6)
sqc984 P222 16 orthorhombic {4,10} 5 (2,6)
sqc1001 P222 16 orthorhombic {4,9} 4 (2,7)
sqc1009 P222 16 orthorhombic {5,8} 4 (2,7)
sqc1010 P222 16 orthorhombic {8,5} 4 (2,7)
sqc1020 P222 16 orthorhombic {4,3,8,4,4} 6 (5,6)
sqc1022 P222 16 orthorhombic {7,6} 4 (2,7)
sqc1023 P222 16 orthorhombic {3,7} 6 (2,6)
sqc1027 P222 16 orthorhombic {6,7} 4 (2,7)
sqc1042 P222 16 orthorhombic {3,4,4,4,4} 7 (5,7)
sqc1047 P222 16 orthorhombic {4,4,4,4,3} 7 (5,7)
sqc1053 P222 16 orthorhombic {4,4,4,3,4} 7 (5,7)
sqc1058 P222 16 orthorhombic {4,3,4,4,4} 7 (5,7)
sqc1081 P222 16 orthorhombic {4,4,4,3,4} 7 (5,7)
sqc1083 P222 16 orthorhombic {10,3} 4 (2,7)
sqc1084 P222 16 orthorhombic {10,3} 4 (2,7)
sqc1085 P222 16 orthorhombic {3,10} 4 (2,7)
sqc1086 P222 16 orthorhombic {8,5} 4 (2,7)
sqc1097 P222 16 orthorhombic {4,6,4,4,4} 6 (5,6)
sqc1098 P222 16 orthorhombic {6,8,4,4,4} 5 (5,6)
sqc1105 P222 16 orthorhombic {4,5} 6 (2,6)
sqc1106 P222 16 orthorhombic {6,4,4,4,4} 6 (5,6)
sqc1111 P222 16 orthorhombic {5,6} 5 (2,6)
sqc1112 P222 16 orthorhombic {5,6} 5 (2,6)
sqc1113 P222 16 orthorhombic {5,3} 6 (2,6)
sqc1130 P222 16 orthorhombic {4,12} 5 (2,7)
sqc1180 P222 16 orthorhombic {3,8} 6 (2,7)
sqc1181 P222 16 orthorhombic {3,8} 6 (2,7)
sqc1189 P222 16 orthorhombic {4,8,4,4,4} 6 (5,7)
sqc1193 P222 16 orthorhombic {4,4,4,8,4} 6 (5,7)
sqc1260 P222 16 orthorhombic {4,4,4,4,4} 7 (5,7)
sqc1274 P222 16 orthorhombic {3,8} 6 (2,7)
sqc1294 P222 16 orthorhombic {4,8,4,4,4} 6 (5,7)
sqc1307 P222 16 orthorhombic {4,6} 6 (2,7)
sqc1308 P222 16 orthorhombic {4,6} 6 (2,7)
sqc1328 P222 16 orthorhombic {6,4} 5 (2,6)
sqc1364 P222 16 orthorhombic {5,4} 6 (2,7)
sqc1448 P222 16 orthorhombic {10,5} 5 (2,7)
sqc1472 P222 16 orthorhombic {3,9} 6 (2,7)
sqc1480 P222 16 orthorhombic {4,7} 6 (2,7)
sqc1481 P222 16 orthorhombic {4,7} 6 (2,7)
sqc1516 P222 16 orthorhombic {4,8,3,4,4,4} 7 (6,7)
sqc1519 P222 16 orthorhombic {4,4,4,4,4,6} 7 (6,7)
sqc1525 P222 16 orthorhombic {4,3,4,4,4,4} 8 (6,7)
sqc1526 P222 16 orthorhombic {5,5} 6 (2,7)
sqc1527 P222 16 orthorhombic {5,5} 6 (2,7)
sqc1528 P222 16 orthorhombic {4,4,4,6,4,4} 7 (6,7)
sqc1535 P222 16 orthorhombic {6,6} 5 (2,7)
sqc1536 P222 16 orthorhombic {6,3} 6 (2,7)
sqc1537 P222 16 orthorhombic {3,6} 6 (2,7)
sqc1546 P222 16 orthorhombic {3,4,4,4,4,4} 8 (6,7)
sqc1650 P222 16 orthorhombic {3,10} 6 (2,8)
sqc1674 P222 16 orthorhombic {4,8} 6 (2,8)
sqc1711 P222 16 orthorhombic {4,4,4,4,4,4} 8 (6,8)
sqc1756 P222 16 orthorhombic {4,4,4,4,4,4} 8 (6,8)
sqc1778 P222 16 orthorhombic {3,10} 6 (2,8)
sqc1880 P222 16 orthorhombic {5,6} 6 (2,8)
sqc2218 P222 16 orthorhombic {4,9} 6 (2,8)
sqc2222 P222 16 orthorhombic {5,7} 6 (2,8)
sqc2230 P222 16 orthorhombic {3,4,4,4,4,4,4} 9 (7,8)
sqc2248 P222 16 orthorhombic {4,3,4,4,4,4,4} 9 (7,8)
sqc2262 P222 16 orthorhombic {6,5} 6 (2,8)
sqc2263 P222 16 orthorhombic {7,3} 6 (2,8)
sqc2601 P222 16 orthorhombic {4,4,4,4,8,4,4} 8 (7,8)
sqc2709 P222 16 orthorhombic {3,6} 8 (2,8)
sqc2784 P222 16 orthorhombic {5,4} 8 (2,8)
sqc14561 P222 16 orthorhombic {3,7} 4 (2,5)
sqc14566 P222 16 orthorhombic {3,8} 4 (2,6)
sqc14570 P222 16 orthorhombic {9,3} 4 (2,6)
sqc14572 P222 16 orthorhombic {7,5} 4 (2,6)
sqc14574 P222 16 orthorhombic {3,10} 4 (2,7)
sqc14576 P222 16 orthorhombic {5,9} 4 (2,7)