P4232

Number208
Symmetry Classcubic
ChiralY

s-nets

428 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc12493 P4232 208 cubic {4,4,4,9} 28 (4,5)
Full image sqc12498 P4232 208 cubic {4,4,4,9} 28 (4,5)
Full image sqc12499 P4232 208 cubic {4,9,6,4} 26 (4,5)
Full image sqc12500 P4232 208 cubic {9,4} 28 (2,5)
Full image sqc12502 P4232 208 cubic {4,9} 28 (2,5)
Full image sqc12504 P4232 208 cubic {4,8,6,3} 26 (4,5)
Full image sqc12506 P4232 208 cubic {3,6,4,8} 28 (4,5)
Full image sqc12507 P4232 208 cubic {4,4,8,3} 28 (4,5)
Full image sqc12509 P4232 208 cubic {6,8,3,6} 26 (4,5)
Full image sqc12515 P4232 208 cubic {7,4} 24 (2,5)
Full image sqc12517 P4232 208 cubic {7,4} 24 (2,5)
Full image sqc12519 P4232 208 cubic {7,4} 24 (2,5)
Full image sqc12520 P4232 208 cubic {7,4} 24 (2,5)
Full image sqc12522 P4232 208 cubic {6,5} 24 (2,5)
Full image sqc12524 P4232 208 cubic {4,6,6,4} 28 (4,5)
Full image sqc12525 P4232 208 cubic {4,4,6,6} 28 (4,5)
Full image sqc12526 P4232 208 cubic {6,4,4,6} 28 (4,5)
Full image sqc12529 P4232 208 cubic {6,4,3,3,3} 38 (5,5)
Full image sqc12530 P4232 208 cubic {4,4,6,6} 28 (4,5)
Full image sqc12531 P4232 208 cubic {5,6} 24 (2,5)
Full image sqc12534 P4232 208 cubic {4,3,6,4} 34 (4,5)
Full image sqc12535 P4232 208 cubic {4,3,4,6} 34 (4,5)
Full image sqc12536 P4232 208 cubic {3,4,6,4} 34 (4,5)
Full image sqc12540 P4232 208 cubic {5,3} 36 (2,5)
Full image sqc12541 P4232 208 cubic {3,5} 36 (2,5)
Full image sqc12544 P4232 208 cubic {3,5} 36 (2,5)
Full image sqc12545 P4232 208 cubic {3,5} 36 (2,5)
Full image sqc12546 P4232 208 cubic {5,3} 36 (2,5)
Full image sqc12549 P4232 208 cubic {5,3} 36 (2,5)
Full image sqc12550 P4232 208 cubic {5,3} 36 (2,5)
Full image sqc12551 P4232 208 cubic {5,3} 36 (2,5)
Full image sqc12552 P4232 208 cubic {5,3} 36 (2,5)
Full image sqc12554 P4232 208 cubic {3,5} 36 (2,5)
Full image sqc12555 P4232 208 cubic {4,4,3,4} 34 (4,5)
Full image sqc12556 P4232 208 cubic {4,3} 36 (2,5)
Full image sqc12557 P4232 208 cubic {3,4} 36 (2,5)
Full image sqc12558 P4232 208 cubic {4,3} 36 (2,5)
Full image sqc12559 P4232 208 cubic {3,4} 36 (2,5)
Full image sqc12562 P4232 208 cubic {4,3} 36 (2,5)
Full image sqc12563 P4232 208 cubic {3,4} 36 (2,5)
Full image sqc12564 P4232 208 cubic {3,4} 36 (2,5)
Full image sqc12565 P4232 208 cubic {3,4} 36 (2,5)
Full image sqc12567 P4232 208 cubic {4,4,3,4} 36 (4,5)
Full image sqc12575 P4232 208 cubic {3,4,3,4,3} 38 (5,5)
Full image sqc12576 P4232 208 cubic {4,3,3,4,3} 38 (5,5)
Full image sqc12577 P4232 208 cubic {3,4,4,3,3} 38 (5,5)
Full image sqc12596 P4232 208 cubic {12,3} 30 (2,5)
Full image sqc12617 P4232 208 cubic {4,4,4,6} 34 (4,6)
Full image sqc12670 P4232 208 cubic {8,4} 30 (2,5)
Full image sqc12671 P4232 208 cubic {4,8} 30 (2,5)
Full image sqc12686 P4232 208 cubic {3,8,3,6,4} 32 (5,5)
Full image sqc12691 P4232 208 cubic {4,4,3,3,8} 34 (5,5)
Full image sqc12720 P4232 208 cubic {3,4,4,6,6} 32 (5,5)
Full image sqc12730 P4232 208 cubic {6,3} 36 (2,6)
Full image sqc12731 P4232 208 cubic {6,3} 36 (2,6)
Full image sqc12733 P4232 208 cubic {6,3} 36 (2,5)
Full image sqc12734 P4232 208 cubic {4,6,4,4,3} 34 (5,5)
Full image sqc12735 P4232 208 cubic {4,4,4,6} 34 (4,6)
Full image sqc12738 P4232 208 cubic {6,3} 36 (2,5)
Full image sqc12749 P4232 208 cubic {3,4,6,4,6} 32 (5,5)
Full image sqc12759 P4232 208 cubic {4,4,6,4,3} 34 (5,5)
Full image sqc12762 P4232 208 cubic {3,4,3,4,6} 38 (5,5)
Full image sqc12763 P4232 208 cubic {4,4,4,6} 34 (4,6)
Full image sqc12774 P4232 208 cubic {4,3,6,3,4} 40 (5,5)
Full image sqc12783 P4232 208 cubic {4,5} 30 (2,5)
Full image sqc12824 P4232 208 cubic {4,4} 36 (2,5)
Full image sqc12825 P4232 208 cubic {4,4} 36 (2,5)
Full image sqc12827 P4232 208 cubic {4,4} 36 (2,5)
Full image sqc12828 P4232 208 cubic {4,4} 36 (2,5)
Full image sqc12834 P4232 208 cubic {3,4,4,3,6} 38 (5,5)
Full image sqc12843 P4232 208 cubic {4,4} 36 (2,6)
Full image sqc12846 P4232 208 cubic {4,4,3,4,3} 40 (5,5)
Full image sqc12887 P4232 208 cubic {4,3,6,4,4} 40 (5,6)
Full image sqc12888 P4232 208 cubic {4,4,3,4,6} 40 (5,6)
Full image sqc12889 P4232 208 cubic {4,3,6,4,4} 40 (5,6)
Full image sqc12890 P4232 208 cubic {4,4,3,4,4} 40 (5,6)
Full image sqc12894 P4232 208 cubic {3,7} 36 (2,6)
Full image sqc12895 P4232 208 cubic {3,7} 36 (2,6)
Full image sqc12896 P4232 208 cubic {3,7} 36 (2,6)
Full image sqc12900 P4232 208 cubic {7,3} 36 (2,6)
Full image sqc12901 P4232 208 cubic {7,3} 36 (2,6)
Full image sqc12902 P4232 208 cubic {7,3} 36 (2,6)
Full image sqc12911 P4232 208 cubic {6,4,4,3,6} 38 (5,6)
Full image sqc12912 P4232 208 cubic {6,4,4,4,3} 38 (5,6)
Full image sqc12913 P4232 208 cubic {4,3,4,4,6} 40 (5,6)
Full image sqc12914 P4232 208 cubic {6,4,3,4,6} 38 (5,6)
Full image sqc12917 P4232 208 cubic {4,4,6,4,3} 38 (5,6)
Full image sqc12920 P4232 208 cubic {4,3,6,4,6} 38 (5,6)
Full image sqc12921 P4232 208 cubic {3,4,6,4,4} 40 (5,6)
Full image sqc12922 P4232 208 cubic {3,4,4,4,6} 40 (5,6)
Full image sqc12923 P4232 208 cubic {3,4,4,6,4} 40 (5,6)
Full image sqc12926 P4232 208 cubic {5,4} 36 (2,6)
Full image sqc12927 P4232 208 cubic {4,5} 36 (2,6)
Full image sqc12931 P4232 208 cubic {5,3} 36 (2,6)
Full image sqc12932 P4232 208 cubic {5,3} 36 (2,6)
Full image sqc12933 P4232 208 cubic {5,3} 36 (2,6)
Full image sqc12934 P4232 208 cubic {3,5} 36 (2,6)
Full image sqc12935 P4232 208 cubic {5,4} 36 (2,6)
Full image sqc12936 P4232 208 cubic {5,4} 36 (2,6)
Full image sqc12938 P4232 208 cubic {5,4} 36 (2,6)