s-net: sqc10195


 
Systre crystallographic geometry file (.cgd)

Links to this net in other databases

topcryst

Topological data

Vertices per primitive translational unit 20
Edges per primitive translational unit 44
Transitivity (vertex,edge)(3,6)
Vertex degrees {10,3,3}
Vertex coordination sequence [(10, 49, 140, 279, 470, 709, 1000, 1339, 1730, 2169), (3, 11, 52, 155, 303, 507, 754, 1058, 1405, 1809), (3, 11, 52, 155, 303, 507, 754, 1058, 1405, 1809)]
Wells’ vertex symbol [4^12.5^8.6^15.7^9.8, 4^2.5, 4^2.5]
Systre key (3, 1, 2, 0, 0, 0, 1, 2, 0, 0, 1, 1, 2, 0, 1, 1, 1, 2, 1, 0, 0, 1, 3, 0, 0, 0, 1, 3, 0, 1, 0, 1, 4, 0, 0, 0, 1, 5, 0, 0, 0, 1, 6, 0, 0, 0, 1, 7, 0, 0, 0, 2, 8, 0, 0, 0, 2, 8, 1, 0, 0, 2, 9, 0, 0, 0, 2, 10, 0, 0, 0, 2, 11, 0, 0, 0, 2, 12, 0, 0, 0, 3, 8, 0, 0, 1, 3, 8, 1, -1, 0, 3, 8, 1, 0, 0, 3, 8, 1, 0, 1, 3, 13, 0, 0, 0, 3, 14, 0, 0, 0, 3, 15, 0, 0, 0, 3, 16, 0, 0, 0, 4, 11, 0, 0, 0, 4, 17, 0, 0, 0, 5, 12, 1, 0, 0, 5, 18, 0, 0, 0, 6, 9, 0, 1, 1, 6, 19, 0, 0, 0, 7, 10, 0, 0, 1, 7, 20, 0, 0, 0, 8, 17, 0, 0, -1, 8, 18, -1, -1, -1, 8, 19, 0, 0, -1, 8, 20, -1, -1, -1, 9, 14, -1, 0, 0, 10, 13, 0, 1, 0, 11, 16, -1, 0, 0, 12, 15, 0, 1, 0, 13, 20, 0, -1, -1, 14, 19, 1, -1, -1, 15, 18, -1, -1, 0, 16, 17, 1, 0, 0)

Geometric data

Systre equilibrium placement (barycentric embedding) maximising unit cell volume

Spacegroup: Fddd

Parameters:

a b c alpha beta gamma
3.34779 4.4008 4.81062 90.0 90.0 90.0

Vertex positions:

X-pos Y-pos Z-pos
0.125 0.125 0.3
0.04167 0.04167 0.43333
0.125 0.45833 0.01667

Edge end points:

Systre coordinates favouring equal edge-lengths

Spacegroup: Fddd

Parameters:

a b c alpha beta gamma
3.05848 2.1499 2.54129 90.0 90.0 90.0

Vertex positions:

X-pos Y-pos Z-pos
0.125 0.125 0.03046
0.2708 0.05549 0.17945
0.07743 0.51005 0.01692

Edge end points:

Hyperbolic sources

h-nets with faithful topology

1 record listed.
Image h-net name Orbifold symbol Transitivity (Vert,Edge,Face) Vertex Degree 2D Vertex Symbol
Net details hqc1707 *22222 (2,5,4) {3,10} {4.4.6}{6.4.4.4.4.6.4.4.4.4}

h-nets with edge collapse

No items to display.