U-tiling: UQC1822
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc113 |
*2224 |
(2,3,2) |
{8,4} |
{4.3.3.4.4.3.3.4}{3.3.3.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc2622
|
|
Fmmm |
69 |
orthorhombic |
{7,4} |
6 |
(2,5) |
G
|
False
|
|
sqc9503
|
|
Fddd |
70 |
orthorhombic |
{8,4} |
12 |
(2,6) |
D
|
False
|
|
sqc3447
|
|
Cmma |
67 |
orthorhombic |
{8,4} |
6 |
(2,5) |
Topological data
Vertex degrees | {8,4} |
2D vertex symbol | {4.3.3.4.4.3.3.4}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<60.2:160:81 42 43 6 7 18 19 30 101 52 53 16 17 40 121 62 63 26 27 38 39 141 72 73 36 37 111 46 47 58 59 70 91 56 57 80 151 66 67 78 79 131 76 77 112 113 86 87 108 109 130 102 103 96 97 118 119 140 106 107 150 116 117 160 152 153 126 127 148 149 142 143 136 137 158 159 146 147 156 157,2 4 8 46 17 10 12 14 18 56 20 22 24 28 66 37 30 32 34 38 76 40 42 44 48 57 50 52 54 58 60 62 64 68 77 70 72 74 78 80 82 84 88 116 107 90 92 94 98 106 117 100 102 104 108 110 112 114 118 120 122 124 128 156 147 130 132 134 138 146 157 140 142 144 148 150 152 154 158 160,91 3 5 7 9 100 111 13 15 17 19 120 131 23 25 27 29 140 151 33 35 37 39 160 101 43 45 47 49 110 81 53 55 57 59 90 141 63 65 67 69 150 121 73 75 77 79 130 83 85 87 89 93 95 97 99 103 105 107 109 113 115 117 119 123 125 127 129 133 135 137 139 143 145 147 149 153 155 157 159:4 3 3 4 4 3 4 3 3 4 3 3 4 3 3 3 4 3 3 4 3 3 3 3,8 4 8 8 4 8 8 8 8 8 4 4> {(0, 87): 'tau1', (2, 0): 't3', (0, 60): 'tau3^-1', (0, 31): 't1^-1', (0, 117): 'tau1', (0, 62): 't1', (0, 20): 'tau2^-1', (0, 129): 't3^-1', (0, 138): 't3*tau1^-1*t2^-1', (2, 49): 't2^-1', (0, 32): 't1^-1', (0, 109): 't2', (2, 10): 't2', (1, 145): 'tau3^-1*t1^-1*tau2', (0, 98): 'tau1^-1', (1, 106): 'tau1^-1', (0, 152): 'tau3*t1*tau2^-1', (0, 142): 'tau3^-1*t1^-1*tau2', (1, 126): 't3^-1*tau1*t2', (0, 119): 't2^-1', (2, 59): 't3^-1', (1, 75): 't1', (0, 147): 't2^-1*tau1^-1*t3', (0, 137): 't3*tau1^-1*t2^-1', (2, 19): 't2', (0, 30): 'tau3', (0, 139): 't3', (2, 50): 't3^-1', (0, 21): 't1^-1', (0, 151): 'tau3*t1*tau2^-1', (0, 128): 't3^-1*tau1*t2', (0, 141): 'tau3^-1*t1^-1*tau2', (0, 108): 'tau1^-1', (1, 156): 't2*tau1*t3^-1', (0, 130): 'tau2^-1', (2, 9): 't3', (1, 125): 'tau2*t1^-1*tau3^-1', (2, 40): 't2^-1', (1, 65): 't1', (1, 116): 'tau1', }