h-net: hqc113


Topological data

Orbifold symbol*2224
Transitivity (vertex, edge, ring)(2,3,2)
Vertex degrees{8,4}
2D vertex symbol {4.3.3.4.4.3.3.4}{3.3.3.3}
Vertex coordination sequence [(8, 32, 120, 448, 1672, 6240, 23288, 86912), (4, 20, 80, 300, 1112, 4164, 15520, 57948)]
Delaney-Dress Symbol <113.2:5:1 2 3 5,2 4 5,1 3 4 5:4 3,8 4>
Dual net hqc138

Derived s-nets

s-nets with faithful topology

23 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc391 P4/mmm 123 tetragonal {8,4} 3 (2,3)
Full image sqc3361 I4/mmm 139 tetragonal {4,8} 6 (2,3)
Full image sqc3378 I4/mmm 139 tetragonal {8,4} 6 (2,4)
Full image sqc3516 Fmmm 69 orthorhombic {8,8,4} 6 (3,5)
Full image sqc9369 I4122 98 tetragonal {8,4} 12 (2,6)
Full image sqc9377 I4122 98 tetragonal {8,8,4} 12 (3,6)
Full image sqc9432 I41/acd 142 tetragonal {8,4} 12 (2,3)
Full image sqc9447 I4122 98 tetragonal {8,4} 12 (2,6)
Full image sqc9468 Fddd 70 orthorhombic {8,4} 12 (2,6)
Full image sqc9475 I4122 98 tetragonal {8,8,4} 12 (3,6)
Full image sqc9503 Fddd 70 orthorhombic {8,4} 12 (2,6)
Full image sqc9504 Fddd 70 orthorhombic {8,8,4} 12 (3,6)
Full image sqc9505 Fddd 70 orthorhombic {8,8,4} 12 (3,6)
Full image sqc9657 I41/acd 142 tetragonal {8,4} 12 (2,3)
Full image sqc479 I4/mmm 139 tetragonal {4,8} 3 (2,3)
Full image sqc3168 P4222 93 tetragonal {4,8,8} 6 (3,5)
Full image sqc3171 Cmma 67 orthorhombic {8,4,8} 6 (3,5)
Full image sqc3172 P4222 93 tetragonal {4,8,8} 6 (3,5)
Full image sqc3201 P4222 93 tetragonal {8,4} 6 (2,5)
Full image sqc3394 P4222 93 tetragonal {4,8} 6 (2,5)
Full image sqc3447 Cmma 67 orthorhombic {8,4} 6 (2,5)
Full image sqc3551 Cmma 67 orthorhombic {8,4} 6 (2,5)
Full image sqc3750 P42/nnm 134 tetragonal {8,4} 6 (2,3)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC111 *2224 (2,3,2) {8,4} {4.3.3.4.4.3.3.4}{3.3.3.3} Snet sqc391 Snet sqc9432 Snet sqc3750
Tiling details UQC112 *2224 (2,3,2) {8,4} {4.3.3.4.4.3.3.4}{3.3.3.3} Snet sqc3361 Snet sqc9657 Snet sqc479
Tiling details UQC1821 *22222a (2,5,4) {8,4} {4.3.3.4.4.3.3.4}{3.3.3.3} Snet sqc8420 Snet sqc9369 Snet sqc3201
Tiling details UQC1822 *22222b (2,5,4) {8,4} {4.3.3.4.4.3.3.4}{3.3.3.3} Snet sqc2622 Snet sqc9503 Snet sqc3447
Tiling details UQC1823 *22222a (2,5,4) {8,4} {4.3.3.4.4.3.3.4}{3.3.3.3} Snet sqc8866 Snet sqc9447 Snet sqc3394
Tiling details UQC1824 *22222b (2,5,4) {8,4} {4.3.3.4.4.3.3.4}{3.3.3.3} Snet sqc3378 Snet sqc9468 Snet sqc3551
Tiling details UQC4152 *22222a (3,5,2) {8,8,4} {4.3.3.4.4.3.3.4}{4.4.3.3.4.4.3.... Snet sqc9272 Snet sqc9377 Snet sqc3168
Tiling details UQC4153 *22222b (3,5,2) {8,8,4} {4.3.3.4.4.3.3.4}{4.4.3.3.4.4.3.... Snet sqc3070 Snet sqc9505 Snet sqc3171
Tiling details UQC4154 *22222b (3,5,2) {8,8,4} {4.3.3.4.4.3.3.4}{4.4.3.3.4.4.3.... Snet sqc3516 Snet sqc9504 Snet sqc391
Tiling details UQC4155 *22222a (3,5,2) {8,8,4} {4.3.3.4.4.3.3.4}{4.4.3.3.4.4.3.... Snet sqc9277 Snet sqc9475 Snet sqc3172

Symmetry-lowered hyperbolic tilings