U-tiling: UQC2240
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1738 |
*22222 |
(2,6,4) |
{5,6} |
{4.4.3.4.4}{4.4.4.4.3.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc3739
|
|
Fmmm |
69 |
orthorhombic |
{5,5} |
8 |
(2,6) |
G
|
False
|
|
sqc10294
|
|
Fddd |
70 |
orthorhombic |
{6,5} |
16 |
(2,7) |
D
|
False
|
|
sqc4315
|
|
Cmma |
67 |
orthorhombic |
{6,5} |
8 |
(2,6) |
Topological data
Vertex degrees | {5,6} |
2D vertex symbol | {4.4.3.4.4}{4.4.4.4.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<65.2:176:89 4 5 17 18 52 20 21 33 111 15 16 63 44 133 26 27 39 40 74 42 43 155 37 38 85 122 48 49 61 62 64 65 77 100 59 60 88 166 70 71 83 84 86 87 144 81 82 92 93 116 117 129 119 120 143 103 104 127 128 118 130 131 154 114 115 165 125 126 176 136 137 160 161 173 163 164 147 148 171 172 162 174 175 158 159 169 170,2 9 92 6 8 11 13 20 114 17 19 22 24 31 136 28 30 33 35 42 158 39 41 44 46 53 125 50 52 55 57 64 103 61 63 66 68 75 169 72 74 77 79 86 147 83 85 88 90 97 94 96 99 101 108 105 107 110 112 119 116 118 121 123 130 127 129 132 134 141 138 140 143 145 152 149 151 154 156 163 160 162 165 167 174 171 173 176,100 3 5 7 96 10 110 122 14 16 18 118 21 132 144 25 27 29 140 32 154 166 36 38 40 162 43 176 111 47 49 51 129 54 121 89 58 60 62 107 65 99 155 69 71 73 173 76 165 133 80 82 84 151 87 143 91 93 95 98 102 104 106 109 113 115 117 120 124 126 128 131 135 137 139 142 146 148 150 153 157 159 161 164 168 170 172 175:3 4 4 4 3 3 4 4 3 3 4 4 3 3 4 3 4 4 4 4 4 4 4 4,6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5> {(0, 29): 't1^-1', (0, 129): 'tau1', (0, 173): 't2*tau1*t3^-1', (2, 10): 't3', (2, 98): 't3', (0, 154): 'tau3^-1', (1, 25): 'tau2^-1', (0, 118): 'tau1^-1', (0, 163): 't2^-1*tau1^-1*t3', (0, 130): 'tau1', (2, 73): 'tau3^-1', (2, 40): 'tau3', (2, 55): 't3^-1', (0, 115): 'tau1^-1', (0, 159): 't2^-1*tau1^-1*t3', (0, 126): 'tau1', (0, 171): 't2*tau1*t3^-1', (0, 152): 't3*tau1^-1*t2^-1', (0, 164): 't2^-1', (0, 40): 't1^-1', (0, 116): 'tau1^-1', (0, 161): 'tau3^-1*t1^-1*tau2', (0, 172): 'tau3*t1*tau2^-1', (0, 143): 'tau2^-1', (0, 162): 't2^-1*tau1^-1*t3', (2, 54): 't2^-1', (2, 21): 't2', (1, 36): 'tau3', (2, 44): 't2^-1', (2, 11): 't2', (2, 29): 'tau2^-1', (2, 0): 't3', (2, 84): 'tau2', (0, 148): 't3*tau1^-1*t2^-1', (0, 119): 'tau1^-1', (0, 160): 't2^-1*tau1^-1*t3', (0, 175): 't2', (0, 142): 't3^-1', (0, 127): 'tau1', (1, 80): 'tau2', (1, 69): 'tau3^-1', (0, 153): 't3', (0, 165): 'tau3', (0, 132): 'tau2', }