U-tiling: UQC2768
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2149 |
*22222 |
(2,6,5) |
{4,5} |
{4.8.3.4}{3.8.4.4.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc5494
|
|
P4/mmm |
123 |
tetragonal |
{4,4} |
12 |
(2,5) |
G
|
False
|
|
sqc11367
|
|
I4122 |
98 |
tetragonal |
{5,4,4} |
24 |
(3,7) |
D
|
False
|
|
sqc5772
|
|
P4222 |
93 |
tetragonal |
{4,5} |
12 |
(2,6) |
Topological data
Vertex degrees | {5,4} |
2D vertex symbol | {4.8.3.4}{3.8.4.4.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<21.1:208:53 119 120 6 7 34 35 23 24 38 39 66 93 94 19 20 47 48 51 52 79 145 146 32 33 49 50 105 132 133 45 46 171 172 58 59 86 87 101 102 90 91 158 159 71 72 112 113 127 128 116 117 197 198 84 85 140 141 157 97 98 138 139 142 143 184 185 110 111 153 154 170 123 124 151 152 155 156 183 136 137 196 149 150 162 163 190 191 179 180 194 195 175 176 203 204 207 208 188 189 205 206 201 202,2 4 31 8 13 10 12 15 17 44 21 26 23 25 28 30 34 39 36 38 41 43 47 52 49 51 54 56 83 60 65 62 64 67 69 109 73 78 75 77 80 82 86 91 88 90 93 95 135 99 104 101 103 106 108 112 117 114 116 119 121 148 125 130 127 129 132 134 138 143 140 142 145 147 151 156 153 155 158 160 187 164 169 166 168 171 173 200 177 182 179 181 184 186 190 195 192 194 197 199 203 208 205 207,27 3 5 7 9 11 13 40 16 18 20 22 24 26 29 31 33 35 37 39 42 44 46 48 50 52 79 55 57 59 61 63 65 105 68 70 72 74 76 78 81 83 85 87 89 91 131 94 96 98 100 102 104 107 109 111 113 115 117 144 120 122 124 126 128 130 133 135 137 139 141 143 146 148 150 152 154 156 183 159 161 163 165 167 169 196 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208:4 8 3 4 4 4 8 3 4 4 8 3 4 4 8 3 4 4 3 3 3 4 4 3,5 4 5 4 4 4 5 4 5 4 4 5 4 4 5 4 4 4 5 4 5 4 4 4> {(0, 179): 'tau1', (0, 190): 't1*tau3*t2^-1', (0, 140): 'tau2', (0, 34): 't1^-1', (0, 111): 'tau3*t2^-1', (2, 182): 'tau2*t3', (0, 75): 't2', (0, 180): 't2^-1*tau3*t1', (1, 199): 't1^-1*tau3^-1*t2', (0, 177): 't3*tau2', (0, 39): 't1', (0, 144): 't1', (2, 91): 't3^-1*tau2^-1', (0, 126): 't2^-1', (2, 169): 't2^-1*tau3*t1', (0, 152): 'tau3^-1', (0, 61): 't3', (0, 178): 'tau1', (1, 186): 'tau2*t3', (2, 39): 't1', (0, 87): 'tau2^-1', (0, 128): 't2^-1*tau3', (0, 205): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 143): 't1', (1, 43): 't1', (0, 51): 't1', (0, 62): 't3', (0, 183): 't1', (0, 59): 't3*tau2', (0, 60): 't3*tau2', (0, 176): 't3*tau2', (0, 191): 'tau2*t3*tau1^-1*t2^-1*tau3*t1', (0, 141): 'tau2*t3', (0, 35): 't1^-1', (0, 184): 't1', (1, 95): 't3^-1*tau2^-1', (0, 155): 'tau3^-1*t2', (0, 49): 't1', (0, 167): 't3^-1*tau2^-1', (2, 117): 't2^-1*tau3', (1, 121): 't2^-1*tau3', (0, 181): 't2^-1*tau3*t1', (0, 142): 'tau2*t3', (0, 145): 't1', (0, 112): 'tau3*t2^-1', (0, 189): 't1*tau3*t2^-1', (0, 50): 't1', (0, 168): 't3^-1*tau2^-1', (0, 33): 't1^-1', (0, 153): 'tau3^-1', }