U-tiling: UQC3126
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc110 |
*2226 |
(1,3,3) |
{5} |
{6.4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc6702
|
|
Pmmm |
47 |
orthorhombic |
{4,5} |
12 |
(2,7) |
G
|
False
|
|
sqc7149
|
|
I212121 |
24 |
orthorhombic |
{5,5,5} |
12 |
(3,8) |
D
|
False
|
|
sqc1527
|
|
P222 |
16 |
orthorhombic |
{5,5} |
6 |
(2,7) |
Topological data
Vertex degrees | {5,5} |
2D vertex symbol | {4.4.6.4.4}{6.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<33.1:120:31 62 63 6 7 68 69 25 26 42 43 74 75 46 77 78 21 22 83 84 57 58 89 90 92 93 36 37 98 99 55 56 104 105 107 108 51 52 113 114 119 120 91 66 67 85 86 102 103 106 81 82 117 118 96 97 115 116 111 112,2 4 20 8 15 10 12 14 17 19 23 30 25 27 29 32 34 50 38 45 40 42 44 47 49 53 60 55 57 59 62 64 80 68 75 70 72 74 77 79 83 90 85 87 89 92 94 110 98 105 100 102 104 107 109 113 120 115 117 119,16 3 5 7 9 11 13 15 18 20 22 24 26 28 30 46 33 35 37 39 41 43 45 48 50 52 54 56 58 60 76 63 65 67 69 71 73 75 78 80 82 84 86 88 90 106 93 95 97 99 101 103 105 108 110 112 114 116 118 120:4 4 6 4 4 4 4 4 4 4 6 4 4 4,5 5 5 5 5 5 5 5 5 5 5 5> {(0, 29): 'tau3', (0, 41): 't3', (0, 55): 'tau2^-1*t3^-1', (0, 22): 't1^-1', (1, 64): 't2^-1*tau3', (0, 59): 't3*tau1^-1*t2^-1*tau3*t1', (2, 90): 't2^-1*tau3*t1', (0, 42): 't3', (0, 23): 't1^-1', (0, 13): 't2', (0, 56): 'tau2^-1*t1', (0, 101): 'tau1*t2', (1, 94): 't2^-1*tau3*t1', (0, 16): 't1^-1', (0, 115): 'tau2^-1*t3^-1', (0, 105): 't1^-1', (0, 43): 't3*tau1^-1', (0, 10): 't1', (0, 57): 'tau2^-1*t1', (0, 24): 't1^-1', (0, 14): 't2', (0, 17): 't1^-1', (0, 102): 'tau1*t2', (0, 28): 'tau3', (0, 116): 'tau2^-1*t3^-1*tau1*t2', (0, 87): 't2^-1*tau1^-1*t3*tau2', (0, 54): 'tau2^-1*t3^-1', (0, 99): 't3*tau2', (0, 44): 't3*tau1^-1', (0, 58): 't3*tau1^-1*t2^-1*tau3*t1', (2, 60): 't2^-1*tau3', }