U-tiling: UQC3683
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc806 |
*22222 |
(3,4,2) |
{3,3,4} |
{6.10.6}{6.10.10}{10.10.10.10} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc163
|
|
Pmmm |
47 |
orthorhombic |
{3,3,4} |
5 |
(3,4) |
G
|
False
|
|
sqc7853
|
|
Fddd |
70 |
orthorhombic |
{3,3,4} |
20 |
(3,5) |
D
|
False
|
|
sqc2122
|
|
Cmma |
67 |
orthorhombic |
{3,4,3} |
10 |
(3,4) |
Topological data
Vertex degrees | {3,3,4} |
2D vertex symbol | {6.10.6}{6.10.10}{10.10.10.10} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<29.4:128:33 3 5 7 24 41 11 13 15 32 49 19 21 23 57 27 29 31 35 37 39 56 43 45 47 64 51 53 55 59 61 63 89 67 69 71 104 81 75 77 79 112 83 85 87 120 91 93 95 128 121 99 101 103 113 107 109 111 115 117 119 123 125 127,2 67 12 6 8 10 83 14 16 18 99 28 22 24 26 115 30 32 34 91 44 38 40 42 75 46 48 50 123 60 54 56 58 107 62 64 66 84 70 72 74 92 78 80 82 86 88 90 94 96 98 116 102 104 106 124 110 112 114 118 120 122 126 128,9 4 5 70 71 80 12 13 86 87 96 25 20 21 102 103 112 28 29 118 119 128 41 36 37 94 95 88 44 45 78 79 72 57 52 53 126 127 120 60 61 110 111 104 81 68 69 89 76 77 84 85 92 93 113 100 101 121 108 109 116 117 124 125:6 10 6 6 6 10 10 10,3 3 4 3 4 3 3 4 3 4 3 3 3 3 3 3 3 3 3 3> {(2, 61): 'tau2', (2, 62): 'tau2', (1, 122): 'tau3', (2, 53): 'tau3^-1', (1, 115): 't2^-1*tau1^-1*t3', (1, 114): 'tau3^-1', (1, 123): 't2*tau1*t3^-1', (2, 47): 't3^-1', (1, 98): 'tau2', (2, 29): 'tau3', (2, 30): 'tau3', (2, 39): 't2^-1', (2, 21): 'tau2^-1', (2, 22): 'tau2^-1', (1, 75): 'tau1^-1', (2, 15): 't2', (1, 67): 'tau1', (2, 54): 'tau3^-1', (0, 48): 't1', (1, 106): 'tau2^-1', (2, 120): 't2*tau1*t3^-1', (0, 127): 't2', (0, 112): 'tau3^-1*t1^-1*tau2', (2, 112): 't2^-1*tau1^-1*t3', (0, 24): 't1^-1', (0, 111): 't3', (0, 96): 'tau2*t1^-1*tau3^-1', (0, 103): 't3^-1', (2, 88): 'tau1', (2, 80): 'tau1^-1', (0, 87): 't2', (2, 79): 't3^-1'}