U-tiling: UQC3684
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc806 |
*22222 |
(3,4,2) |
{3,3,4} |
{6.10.6}{6.10.10}{10.10.10.10} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc1577
|
|
Fmmm |
69 |
orthorhombic |
{3,3,3} |
10 |
(3,4) |
G
|
False
|
|
sqc7805
|
|
Fddd |
70 |
orthorhombic |
{3,3,4} |
20 |
(3,5) |
D
|
False
|
|
sqc163
|
|
Pmmm |
47 |
orthorhombic |
{3,3,4} |
5 |
(3,4) |
Topological data
Vertex degrees | {3,3,4} |
2D vertex symbol | {6.10.6}{6.10.10}{10.10.10.10} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<29.3:128:65 3 5 7 16 81 11 13 15 97 19 21 23 32 113 27 29 31 89 35 37 39 48 73 43 45 47 121 51 53 55 64 105 59 61 63 67 69 71 88 75 77 79 96 83 85 87 91 93 95 99 101 103 120 107 109 111 128 115 117 119 123 125 127,2 75 36 6 8 10 91 44 14 16 18 107 52 22 24 26 123 60 30 32 34 83 38 40 42 67 46 48 50 115 54 56 58 99 62 64 66 92 70 72 74 84 78 80 82 86 88 90 94 96 98 124 102 104 106 116 110 112 114 118 120 122 126 128,33 4 5 78 79 24 41 12 13 94 95 32 49 20 21 110 111 57 28 29 126 127 36 37 86 87 56 44 45 70 71 64 52 53 118 119 60 61 102 103 89 68 69 104 81 76 77 112 84 85 120 92 93 128 121 100 101 113 108 109 116 117 124 125:6 10 6 6 10 6 10 10,3 3 4 3 3 4 3 3 3 3 3 4 3 4 3 3 3 3 3 3> {(0, 56): 'tau2', (2, 56): 't1', (0, 48): 'tau3^-1', (2, 48): 't1', (1, 123): 'tau3*t1*tau2^-1', (2, 45): 't3^-1', (2, 46): 't3^-1', (2, 37): 't2^-1', (2, 38): 't2^-1', (0, 24): 'tau3', (1, 90): 't2^-1', (0, 16): 'tau2^-1', (1, 82): 't2', (2, 13): 't2', (2, 14): 't2', (1, 74): 't3^-1', (2, 5): 't3', (2, 6): 't3', (1, 115): 'tau3^-1*t1^-1*tau2', (2, 127): 't2', (2, 120): 'tau3*t1*tau2^-1', (0, 127): 't2*tau1*t3^-1', (1, 51): 't1', (2, 119): 't2^-1', (2, 112): 'tau3^-1*t1^-1*tau2', (0, 119): 't2^-1*tau1^-1*t3', (1, 42): 't3^-1', (2, 103): 't3^-1', (1, 27): 't1^-1', (0, 95): 'tau1', (0, 87): 'tau1^-1', (2, 111): 't3'}