U-tiling: UQC3685
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc806 |
*22222 |
(3,4,2) |
{3,3,4} |
{6.10.6}{6.10.10}{10.10.10.10} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
G
|
False
|
|
sqc7792
|
|
Fddd |
70 |
orthorhombic |
{3,3,4} |
20 |
(3,5) |
D
|
False
|
|
sqc14616
|
|
Pmmm |
47 |
orthorhombic |
{3,4,3} |
5 |
(3,4) |
Topological data
Vertex degrees | {3,3,4} |
2D vertex symbol | {6.10.6}{6.10.10}{10.10.10.10} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<29.1:128:17 3 5 7 72 25 11 13 15 88 19 21 23 104 27 29 31 120 49 35 37 39 96 57 43 45 47 80 51 53 55 128 59 61 63 112 97 67 69 71 105 75 77 79 113 83 85 87 121 91 93 95 99 101 103 107 109 111 115 117 119 123 125 127,2 11 76 6 8 10 92 14 16 18 27 108 22 24 26 124 30 32 34 43 84 38 40 42 68 46 48 50 59 116 54 56 58 100 62 64 66 83 70 72 74 91 78 80 82 86 88 90 94 96 98 115 102 104 106 123 110 112 114 118 120 122 126 128,73 4 5 14 15 40 89 12 13 48 105 20 21 30 31 56 121 28 29 64 81 36 37 46 47 65 44 45 113 52 53 62 63 97 60 61 68 69 86 87 96 76 77 94 95 88 84 85 92 93 100 101 118 119 128 108 109 126 127 120 116 117 124 125:6 10 10 10 10 6 6 6,3 3 4 3 3 3 4 3 3 3 3 3 3 3 3 4 3 3 4 3> {(1, 122): 't2*tau1*t3^-1', (0, 63): 'tau2', (2, 55): 't1', (0, 55): 'tau3^-1', (2, 40): 't3^-1', (1, 98): 't3^-1*tau1*t2', (2, 32): 't2^-1', (1, 35): 't2^-1', (1, 91): 't2^-1', (2, 31): 't1^-1', (0, 31): 'tau3', (1, 82): 'tau1^-1', (0, 23): 'tau2^-1', (1, 75): 't3^-1', (1, 74): 'tau1^-1', (2, 8): 't2', (1, 67): 't3', (2, 118): 't2^-1*tau1^-1*t3', (2, 125): 't2*tau1*t3^-1', (0, 120): 't2', (2, 117): 't2^-1*tau1^-1*t3', (0, 112): 't2^-1', (2, 119): 'tau3^-1*t1^-1*tau2', (0, 104): 't3', (2, 126): 't2*tau1*t3^-1', (0, 96): 't3^-1', (2, 103): 'tau2*t1^-1*tau3^-1', (2, 93): 'tau1', (2, 94): 'tau1', (2, 85): 'tau1^-1', (2, 72): 't3^-1', (2, 70): 'tau1'}