U-tiling: UQC3882
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1105 |
*22222 |
(3,5,2) |
{4,3,4} |
{3.12.12.3}{3.12.12}{12.12.12.12} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc308
|
|
Pmmm |
47 |
orthorhombic |
{3,4,4} |
5 |
(3,5) |
G
|
False
|
|
sqc9131
|
|
Fddd |
70 |
orthorhombic |
{4,3,4} |
20 |
(3,6) |
D
|
False
|
|
sqc3014
|
|
Cmma |
67 |
orthorhombic |
{4,4,3} |
10 |
(3,5) |
Topological data
Vertex degrees | {4,3,4} |
2D vertex symbol | {3.12.12.3}{3.12.12}{12.12.12.12} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<38.3:144:73 3 5 15 8 27 91 12 14 17 36 109 21 23 33 26 127 30 32 35 100 39 41 51 44 63 82 48 50 53 72 136 57 59 69 62 118 66 68 71 75 77 96 80 117 84 86 105 89 126 93 95 98 135 102 104 107 144 111 113 132 116 120 122 141 125 129 131 134 138 140 143,2 75 6 7 9 11 93 15 16 18 20 111 24 25 27 29 129 33 34 36 38 102 42 43 45 47 84 51 52 54 56 138 60 61 63 65 120 69 70 72 74 78 79 81 83 87 88 90 92 96 97 99 101 105 106 108 110 114 115 117 119 123 124 126 128 132 133 135 137 141 142 144,37 4 5 42 79 80 90 46 13 14 51 97 98 108 55 22 23 60 115 116 126 64 31 32 69 133 134 144 40 41 106 107 99 49 50 88 89 81 58 59 142 143 135 67 68 124 125 117 100 76 77 105 91 85 86 96 94 95 103 104 136 112 113 141 127 121 122 132 130 131 139 140:3 12 3 3 3 3 12 3 3 3 12 12,4 3 4 4 3 4 4 3 4 4 3 4 3 3 3 3 4 4 4 4> {(2, 60): 'tau3^-1', (2, 61): 'tau3^-1', (2, 63): 't1', (0, 63): 'tau2', (2, 59): 't1', (2, 53): 't3^-1', (2, 54): 't1', (0, 54): 'tau3^-1', (1, 119): 'tau2^-1', (2, 44): 't2^-1', (1, 110): 'tau2', (2, 32): 't1^-1', (2, 33): 'tau3', (2, 34): 'tau3', (0, 27): 'tau3', (2, 24): 'tau2^-1', (2, 25): 'tau2^-1', (0, 18): 'tau2^-1', (2, 17): 't2', (2, 140): 'tau3*t1*tau2^-1', (2, 8): 't3', (0, 143): 't2', (0, 140): 't2*tau1*t3^-1', (0, 131): 't2^-1*tau1^-1*t3', (2, 135): 'tau3*t1*tau2^-1', (0, 134): 't2^-1', (2, 131): 'tau3^-1*t1^-1*tau2', (2, 124): 'tau2^-1', (1, 56): 'tau3^-1', (2, 126): 'tau3^-1*t1^-1*tau2', (0, 125): 't3', (0, 116): 't3^-1', (1, 29): 'tau3', (0, 95): 'tau1^-1', (0, 86): 'tau1^-1', (2, 69): 'tau2'}