U-tiling: UQC3915
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1109 |
*222222 |
(3,5,2) |
{4,3,4} |
{6.12.12.6}{6.12.12}{12.12.12.12} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc2284
|
|
Pmmm |
47 |
orthorhombic |
{4,3,3} |
10 |
(3,5) |
G
|
False
|
|
sqc2870
|
|
I212121 |
24 |
orthorhombic |
{4,3,4} |
10 |
(3,6) |
D
|
False
|
|
sqc307
|
|
P222 |
16 |
orthorhombic |
{3,4,4} |
5 |
(3,5) |
Topological data
Vertex degrees | {4,3,4} |
2D vertex symbol | {6.12.12.6}{6.12.12}{12.12.12.12} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<32.1:72:10 3 5 42 8 18 12 14 51 17 28 21 23 60 26 36 30 32 69 35 46 39 41 44 54 48 50 53 64 57 59 62 72 66 68 71,2 39 6 7 9 11 48 15 16 18 20 57 24 25 27 29 66 33 34 36 38 42 43 45 47 51 52 54 56 60 61 63 65 69 70 72,19 4 5 24 43 44 27 28 13 14 33 52 53 36 22 23 61 62 31 32 70 71 55 40 41 60 63 64 49 50 69 72 58 59 67 68:6 12 6 12,4 3 4 4 3 4 3 3 4 4> {(2, 60): 'tau1*t3^-1', (2, 61): 'tau1*t3^-1', (2, 62): 'tau1*t2', (2, 63): 't1^-1', (0, 62): 't3*tau2', (0, 63): 't1^-1*tau3^-1*t2', (2, 52): 'tau3^-1', (2, 53): 't2^-1*tau1^-1*t3*tau2', (2, 43): 't2^-1', (2, 50): 't1', (2, 51): 'tau3^-1', (2, 42): 't2^-1', (0, 45): 'tau3^-1*t2', (0, 35): 'tau2^-1*t3^-1', (2, 33): 't3*tau1^-1*t2^-1*tau3*t1', (2, 34): 't3*tau1^-1*t2^-1*tau3*t1', (2, 35): 'tau2^-1*t1', (2, 26): 't3', (0, 17): 't1^-1', (0, 50): 't1', (1, 65): 't1^-1*tau3^-1*t2*tau1*t3^-1', (1, 56): 'tau1*t3^-1', (1, 47): 'tau3^-1', (1, 38): 't2^-1'}