U-tiling: UQC4154
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc113 |
*2224 |
(2,3,2) |
{8,4} |
{4.3.3.4.4.3.3.4}{3.3.3.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc3516
|
|
Fmmm |
69 |
orthorhombic |
{8,8,4} |
6 |
(3,5) |
G
|
False
|
|
sqc9504
|
|
Fddd |
70 |
orthorhombic |
{8,8,4} |
12 |
(3,6) |
D
|
False
|
|
sqc391
|
|
P4/mmm |
123 |
tetragonal |
{8,4} |
3 |
(2,3) |
Topological data
Vertex degrees | {8,8,4} |
2D vertex symbol | {4.3.3.4.4.3.3.4}{4.4.3.3.4.4.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<2.3:160:81 3 5 7 9 90 101 13 15 17 19 110 121 23 25 27 29 130 141 33 35 37 39 150 111 43 45 47 49 120 91 53 55 57 59 100 151 63 65 67 69 160 131 73 75 77 79 140 83 85 87 89 93 95 97 99 103 105 107 109 113 115 117 119 123 125 127 129 133 135 137 139 143 145 147 149 153 155 157 159,2 10 6 9 8 12 20 16 19 18 22 30 26 29 28 32 40 36 39 38 42 50 46 49 48 52 60 56 59 58 62 70 66 69 68 72 80 76 79 78 82 90 86 89 88 92 100 96 99 98 102 110 106 109 108 112 120 116 119 118 122 130 126 129 128 132 140 136 139 138 142 150 146 149 148 152 160 156 159 158,41 4 5 16 17 28 29 100 51 14 15 38 39 120 61 24 25 36 37 140 71 34 35 160 44 45 56 57 68 69 110 54 55 78 79 90 64 65 76 77 150 74 75 130 111 84 85 106 107 128 129 101 94 95 116 117 138 139 104 105 148 149 114 115 158 159 151 124 125 146 147 141 134 135 156 157 144 145 154 155:4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 3 3 3 3 3 3 3 3,8 8 4 8 8 8 4 8 8 4 4 8> {(2, 60): 't1', (0, 60): 'tau3^-1', (2, 59): 't3^-1', (2, 49): 't2^-1', (0, 20): 'tau2^-1', (2, 147): 't2^-1', (2, 156): 't2*tau1*t3^-1', (2, 157): 't2', (2, 30): 't1^-1', (0, 30): 'tau3', (0, 159): 'tau3', (0, 29): 'tau2^-1', (2, 150): 'tau3*t1*tau2^-1', (2, 145): 't2^-1*tau1^-1*t3', (2, 146): 't2^-1*tau1^-1*t3', (2, 19): 't2', (2, 140): 'tau3^-1*t1^-1*tau2', (0, 139): 'tau2^-1', (2, 9): 't3', (2, 138): 't3', (0, 130): 'tau2^-1', (2, 135): 't3*tau1^-1*t2^-1', (2, 128): 't3^-1', (2, 137): 't3', (2, 116): 'tau1', (2, 118): 't2^-1', (2, 115): 'tau1', (2, 108): 't2', (2, 105): 'tau1^-1', (2, 106): 'tau1^-1', (2, 87): 't3', (0, 149): 'tau3^-1'}