U-tiling: UQC4424
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1438 |
*22222 |
(4,6,2) |
{4,4,4,4} |
{4.4.4.4}{4.6.6.4}{6.6.6.6}{6.6.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc2273
|
|
Fmmm |
69 |
orthorhombic |
{3,3,4,4} |
10 |
(4,6) |
G
|
False
|
|
sqc9561
|
|
Fddd |
70 |
orthorhombic |
{4,4,4,4} |
20 |
(4,6) |
D
|
False
|
|
sqc3713
|
|
Cmma |
67 |
orthorhombic |
{4,4,4,4} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,4,4,4} |
2D vertex symbol | {4.4.4.4}{4.6.6.4}{6.6.6.6}{6.6.6.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<49.5:160:11 3 14 15 7 9 20 13 17 19 31 23 34 35 27 29 40 33 37 39 51 43 54 55 47 49 60 53 57 59 71 63 74 75 67 69 80 73 77 79 101 83 104 105 87 89 110 111 93 114 115 97 99 120 103 107 109 113 117 119 141 123 144 145 127 129 150 151 133 154 155 137 139 160 143 147 149 153 157 159,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160,21 92 93 5 96 97 88 89 50 31 112 113 15 116 117 108 109 60 132 133 25 136 137 128 129 70 152 153 35 156 157 148 149 80 61 102 103 45 106 107 118 119 71 82 83 55 86 87 98 99 142 143 65 146 147 158 159 122 123 75 126 127 138 139 121 85 120 131 95 110 141 105 151 115 125 160 135 150 145 155:4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 56): 't3^-1', (2, 52): 't3^-1', (0, 150): 't2*tau1*t3^-1', (2, 55): 't3^-1', (2, 51): 't3^-1', (2, 45): 't2^-1', (2, 46): 't2^-1', (2, 41): 't2^-1', (2, 42): 't2^-1', (2, 39): 't1^-1', (2, 157): 'tau3', (2, 158): 'tau3', (2, 159): 'tau3*t1*tau2^-1', (0, 159): 't2*tau1*t3^-1', (2, 27): 'tau2^-1', (2, 148): 'tau3^-1', (2, 149): 'tau3^-1*t1^-1*tau2', (2, 150): 't2', (2, 16): 't2', (2, 147): 'tau3^-1', (2, 140): 't2^-1', (2, 15): 't2', (2, 137): 'tau2^-1', (2, 138): 'tau2^-1', (2, 11): 't2', (2, 5): 't3', (2, 6): 't3', (2, 12): 't2', (2, 128): 'tau2', (2, 1): 't3', (2, 130): 't3', (0, 123): 't3^-1*tau1*t2', (0, 120): 't3^-1*tau1*t2', (2, 120): 't3^-1', (0, 124): 't3^-1*tau1*t2', (2, 29): 't1^-1', (0, 114): 'tau1', (0, 113): 'tau1', (0, 119): 'tau1', (0, 104): 'tau1^-1', (0, 153): 't2*tau1*t3^-1', (0, 110): 'tau1', (0, 109): 'tau1^-1', (0, 103): 'tau1^-1', (0, 100): 'tau1^-1', (0, 134): 't3*tau1^-1*t2^-1', (2, 2): 't3', (0, 149): 't2^-1*tau1^-1*t3'}