U-tiling: UQC4425
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1438 |
*22222 |
(4,6,2) |
{4,4,4,4} |
{4.4.4.4}{4.6.6.4}{6.6.6.6}{6.6.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc3080
|
|
Fmmm |
69 |
orthorhombic |
{4,3,4,4} |
10 |
(4,6) |
G
|
False
|
|
sqc9577
|
|
Fddd |
70 |
orthorhombic |
{4,4,4,4} |
20 |
(4,6) |
D
|
False
|
|
sqc3715
|
|
Cmma |
67 |
orthorhombic |
{4,4,4,4} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,4,4,4} |
2D vertex symbol | {4.4.4.4}{4.6.6.4}{6.6.6.6}{6.6.6.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<49.2:160:91 3 94 95 7 9 100 111 13 114 115 17 19 120 131 23 134 135 27 29 140 151 33 154 155 37 39 160 101 43 104 105 47 49 110 81 53 84 85 57 59 90 141 63 144 145 67 69 150 121 73 124 125 77 79 130 83 87 89 93 97 99 103 107 109 113 117 119 123 127 129 133 137 139 143 147 149 153 157 159,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160,81 42 43 5 46 47 18 19 30 101 52 53 15 56 57 40 121 62 63 25 66 67 38 39 141 72 73 35 76 77 111 45 58 59 70 91 55 80 151 65 78 79 131 75 112 113 85 116 117 108 109 130 102 103 95 106 107 118 119 140 105 150 115 160 152 153 125 156 157 148 149 142 143 135 146 147 158 159 145 155:4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(0, 59): 't3^-1', (2, 62): 't1', (2, 61): 't1', (0, 50): 't3^-1', (0, 49): 't2^-1', (0, 54): 't3^-1', (0, 53): 't3^-1', (0, 43): 't2^-1', (0, 40): 't2^-1', (0, 44): 't2^-1', (2, 30): 'tau3', (2, 36): 't1^-1', (2, 32): 't1^-1', (2, 35): 't1^-1', (2, 156): 'tau3*t1*tau2^-1', (2, 157): 't2*tau1*t3^-1', (2, 158): 't2*tau1*t3^-1', (2, 159): 't2', (2, 152): 'tau3*t1*tau2^-1', (2, 25): 't1^-1', (2, 26): 't1^-1', (2, 155): 'tau3*t1*tau2^-1', (2, 148): 't2^-1*tau1^-1*t3', (2, 149): 't2^-1', (2, 150): 'tau3', (2, 151): 'tau3*t1*tau2^-1', (2, 145): 'tau3^-1*t1^-1*tau2', (2, 146): 'tau3^-1*t1^-1*tau2', (2, 147): 't2^-1*tau1^-1*t3', (0, 10): 't2', (2, 141): 'tau3^-1*t1^-1*tau2', (2, 142): 'tau3^-1*t1^-1*tau2', (0, 9): 't3', (2, 139): 't3', (0, 3): 't3', (0, 0): 't3', (2, 129): 't3^-1', (0, 4): 't3', (0, 114): 't2^-1', (2, 117): 'tau1', (2, 118): 'tau1', (0, 113): 't2^-1', (0, 119): 't2^-1', (2, 108): 'tau1^-1', (2, 31): 't1^-1', (2, 107): 'tau1^-1', (2, 20): 'tau2^-1', (2, 70): 'tau2'}