U-tiling: UQC4776
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1762 |
*22222 |
(4,6,2) |
{4,3,4,4} |
{3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc3999
|
|
Fmmm |
69 |
orthorhombic |
{4,4,3,3} |
12 |
(4,6) |
G
|
False
|
|
sqc10366
|
|
Fddd |
70 |
orthorhombic |
{4,3,4,4} |
24 |
(4,7) |
D
|
False
|
|
sqc4642
|
|
Cmma |
67 |
orthorhombic |
{4,3,4,4} |
12 |
(4,6) |
Topological data
Vertex degrees | {4,3,4,4} |
2D vertex symbol | {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<61.3:176:89 3 5 17 8 10 22 111 14 16 19 21 133 25 27 39 30 32 44 155 36 38 41 43 122 47 49 61 52 54 66 100 58 60 63 65 166 69 71 83 74 76 88 144 80 82 85 87 91 93 116 96 98 121 102 104 127 107 109 132 113 115 118 120 124 126 129 131 135 137 160 140 142 165 146 148 171 151 153 176 157 159 162 164 168 170 173 175,2 91 6 7 9 11 13 113 17 18 20 22 24 135 28 29 31 33 35 157 39 40 42 44 46 124 50 51 53 55 57 102 61 62 64 66 68 168 72 73 75 77 79 146 83 84 86 88 90 94 95 97 99 101 105 106 108 110 112 116 117 119 121 123 127 128 130 132 134 138 139 141 143 145 149 150 152 154 156 160 161 163 165 167 171 172 174 176,45 4 5 50 95 96 108 109 33 56 15 16 61 117 118 130 131 44 67 26 27 72 139 140 152 153 78 37 38 83 161 162 174 175 48 49 128 129 119 120 77 59 60 106 107 97 98 88 70 71 172 173 163 164 81 82 150 151 141 142 122 92 93 127 143 111 103 104 116 154 114 115 165 125 126 176 166 136 137 171 155 147 148 160 158 159 169 170:3 8 3 3 8 3 3 8 3 3 8 3 8 8 8 8,4 3 4 4 4 3 4 4 4 3 4 4 3 4 3 4 3 4 3 3 4 4 4 4> {(2, 63): 't3^-1', (2, 52): 't2^-1', (2, 53): 't2^-1', (2, 172): 'tau3', (2, 175): 't2', (0, 175): 't2*tau1*t3^-1', (2, 170): 'tau3*t1*tau2^-1', (2, 171): 'tau3', (2, 164): 't2^-1', (2, 165): 'tau3*t1*tau2^-1', (2, 38): 't1^-1', (0, 33): 'tau3', (2, 160): 'tau3^-1', (2, 161): 'tau3^-1', (2, 159): 'tau3^-1*t1^-1*tau2', (2, 153): 't3', (2, 154): 'tau3^-1*t1^-1*tau2', (2, 27): 't1^-1', (2, 149): 'tau2^-1', (2, 150): 'tau2^-1', (0, 22): 'tau2^-1', (2, 33): 't1^-1', (2, 142): 't3^-1', (0, 142): 't3^-1*tau1*t2', (0, 143): 'tau2^-1', (2, 138): 'tau2', (2, 139): 'tau2', (2, 8): 't3', (0, 170): 't2*tau1*t3^-1', (2, 129): 't2^-1', (2, 130): 't2^-1', (2, 9): 't3', (0, 120): 'tau1^-1', (0, 126): 'tau1', (0, 115): 'tau1^-1', (0, 109): 'tau1^-1', (1, 35): 'tau3', (2, 97): 't3', (1, 167): 'tau3', (0, 159): 't2^-1*tau1^-1*t3', (1, 24): 'tau2^-1', (1, 145): 'tau2^-1', (0, 66): 'tau3^-1', (2, 22): 't1^-1'}