U-tiling: UQC4882
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1782 |
*22222 |
(4,6,2) |
{3,4,4,4} |
{6.5.6}{6.6.5.5}{5.5.5.5}{6.6.6.6} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc4516
|
|
Fmmm |
69 |
orthorhombic |
{4,4,4,3} |
12 |
(4,6) |
G
|
False
|
|
sqc10371
|
|
Fddd |
70 |
orthorhombic |
{3,4,4,4} |
24 |
(4,7) |
D
|
False
|
|
sqc4571
|
|
Cmma |
67 |
orthorhombic |
{3,4,4,4} |
12 |
(4,6) |
Topological data
Vertex degrees | {3,4,4,4} |
2D vertex symbol | {6.5.6}{6.6.5.5}{5.5.5.5}{6.6.6.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<65.3:176:89 3 5 7 52 10 99 111 14 16 18 63 21 121 133 25 27 29 74 32 143 155 36 38 40 85 43 165 122 47 49 51 54 132 100 58 60 62 65 110 166 69 71 73 76 176 144 80 82 84 87 154 91 93 95 129 98 102 104 106 118 109 113 115 117 120 124 126 128 131 135 137 139 173 142 146 148 150 162 153 157 159 161 164 168 170 172 175,2 9 48 6 8 11 13 20 59 17 19 22 24 31 70 28 30 33 35 42 81 39 41 44 46 53 50 52 55 57 64 61 63 66 68 75 72 74 77 79 86 83 85 88 90 97 125 94 96 99 101 108 114 105 107 110 112 119 116 118 121 123 130 127 129 132 134 141 169 138 140 143 145 152 158 149 151 154 156 163 160 162 165 167 174 171 173 176,45 4 5 28 29 19 31 32 110 56 15 16 39 40 42 43 132 67 26 27 41 154 78 37 38 176 48 49 72 73 63 75 76 121 59 60 83 84 86 87 99 70 71 85 165 81 82 143 122 92 93 138 139 118 141 142 111 103 104 149 150 129 152 153 114 115 160 161 163 164 125 126 171 172 174 175 166 136 137 162 155 147 148 173 158 159 169 170:6 5 6 5 6 5 6 5 6 6 6 6 5 5 5 5,3 4 4 4 3 4 4 3 3 4 4 4 4 4 3 4 4 3 4 4 4 4 3 3> {(0, 172): 'tau3*t1*tau2^-1', (2, 54): 't2^-1', (2, 172): 't2*tau1*t3^-1', (0, 43): 'tau3', (0, 40): 't1^-1', (2, 170): 't2', (2, 171): 't2', (2, 165): 'tau3*t1*tau2^-1', (0, 32): 'tau2^-1', (0, 33): 'tau3', (2, 160): 't2^-1', (2, 161): 't2^-1*tau1^-1*t3', (2, 162): 't2^-1', (2, 163): 't2^-1', (2, 159): 't2^-1', (2, 152): 't3', (2, 154): 'tau3^-1*t1^-1*tau2', (0, 29): 't1^-1', (2, 148): 't3', (1, 80): 't1', (2, 22): 't1^-1', (2, 151): 't3', (0, 22): 'tau2^-1', (2, 33): 't1^-1', (2, 140): 't3^-1', (2, 141): 't3^-1', (2, 137): 't3^-1', (2, 138): 't3^-1', (2, 128): 'tau1', (2, 129): 't2^-1', (2, 130): 't2^-1', (2, 131): 't2^-1', (2, 10): 't3', (2, 117): 'tau1^-1', (1, 168): 'tau3*t1*tau2^-1', (2, 105): 't3^-1', (2, 98): 't3', (1, 25): 't1^-1', (1, 157): 'tau3^-1*t1^-1*tau2', (0, 87): 'tau2', (0, 161): 'tau3^-1*t1^-1*tau2', (0, 76): 'tau3^-1', (0, 77): 'tau2', (0, 66): 'tau3^-1'}