U-tiling: UQC5027
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1848 |
*22222 |
(4,5,2) |
{4,8,6,4} |
{5.5.5.5}{5.3.3.5.5.3.3.5}{5.3.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc4371
|
|
Fmmm |
69 |
orthorhombic |
{4,8,6,4} |
8 |
(4,5) |
G
|
False
|
|
sqc10360
|
|
Fddd |
70 |
orthorhombic |
{4,8,6,4} |
16 |
(4,6) |
D
|
False
|
|
sqc676
|
|
Pmmm |
47 |
orthorhombic |
{4,6,8,4} |
4 |
(4,5) |
Topological data
Vertex degrees | {4,8,6,4} |
2D vertex symbol | {5.5.5.5}{5.3.3.5.5.3.3.5}{5.3.3.5.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<8.4:176:45 3 5 7 9 11 56 14 16 18 20 22 67 25 27 29 31 33 78 36 38 40 42 44 47 49 51 53 55 58 60 62 64 66 69 71 73 75 77 80 82 84 86 88 122 91 93 95 97 99 111 102 104 106 108 110 113 115 117 119 121 124 126 128 130 132 166 135 137 139 141 143 155 146 148 150 152 154 157 159 161 163 165 168 170 172 174 176,2 4 49 8 11 10 13 15 60 19 22 21 24 26 71 30 33 32 35 37 82 41 44 43 46 48 52 55 54 57 59 63 66 65 68 70 74 77 76 79 81 85 88 87 90 92 126 96 99 98 101 103 115 107 110 109 112 114 118 121 120 123 125 129 132 131 134 136 170 140 143 142 145 147 159 151 154 153 156 158 162 165 164 167 169 173 176 175,12 24 25 6 7 107 108 98 99 35 36 17 18 129 130 120 121 34 28 29 151 152 142 143 39 40 173 174 164 165 56 68 69 50 51 118 119 131 132 79 80 61 62 96 97 109 110 78 72 73 162 163 175 176 83 84 140 141 153 154 111 134 135 94 95 122 145 146 105 106 156 157 116 117 167 168 127 128 155 138 139 166 149 150 160 161 171 172:5 3 5 3 5 3 5 3 3 3 3 3 5 3 5 3 3 3 5 3 5 3 3 3,4 8 6 4 8 6 4 6 4 6 4 4 8 8 4 4> {(2, 62): 't3^-1', (2, 63): 't3^-1', (2, 52): 't2^-1', (0, 22): 't1^-1', (2, 51): 't2^-1', (2, 174): 'tau3', (2, 175): 'tau3', (2, 42): 'tau3', (2, 43): 'tau3', (2, 165): 't2*tau1*t3^-1', (2, 166): 't2', (0, 33): 't1^-1', (2, 32): 'tau2^-1', (0, 165): 'tau3*t1*tau2^-1', (0, 154): 'tau3^-1*t1^-1*tau2', (2, 31): 'tau2^-1', (2, 152): 'tau2^-1', (2, 153): 'tau2^-1', (2, 154): 't2^-1*tau1^-1*t3', (2, 155): 't2^-1', (1, 81): 't1', (2, 144): 't3', (2, 145): 't3', (2, 18): 't2', (2, 19): 't2', (2, 8): 't3', (2, 133): 't3^-1', (2, 134): 't3^-1', (2, 7): 't3', (2, 167): 't2', (2, 156): 't2^-1', (2, 121): 'tau1', (1, 169): 'tau3*t1*tau2^-1', (2, 110): 'tau1^-1', (1, 26): 't1^-1', (1, 158): 'tau3^-1*t1^-1*tau2'}