U-tiling: UQC5028
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1848 |
*22222 |
(4,5,2) |
{4,8,6,4} |
{5.5.5.5}{5.3.3.5.5.3.3.5}{5.3.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc676
|
|
Pmmm |
47 |
orthorhombic |
{4,6,8,4} |
4 |
(4,5) |
G
|
False
|
|
sqc10489
|
|
Fddd |
70 |
orthorhombic |
{4,8,6,4} |
16 |
(4,6) |
D
|
False
|
|
sqc4370
|
|
Cmma |
67 |
orthorhombic |
{4,6,8,4} |
8 |
(4,5) |
Topological data
Vertex degrees | {4,8,6,4} |
2D vertex symbol | {5.5.5.5}{5.3.3.5.5.3.3.5}{5.3.3.5.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<8.1:176:23 3 5 7 9 11 34 14 16 18 20 22 25 27 29 31 33 36 38 40 42 44 67 47 49 51 53 55 78 58 60 62 64 66 69 71 73 75 77 80 82 84 86 88 133 91 93 95 97 99 144 102 104 106 108 110 155 113 115 117 119 121 166 124 126 128 130 132 135 137 139 141 143 146 148 150 152 154 157 159 161 163 165 168 170 172 174 176,2 4 27 8 11 10 13 15 38 19 22 21 24 26 30 33 32 35 37 41 44 43 46 48 71 52 55 54 57 59 82 63 66 65 68 70 74 77 76 79 81 85 88 87 90 92 137 96 99 98 101 103 148 107 110 109 112 114 159 118 121 120 123 125 170 129 132 131 134 136 140 143 142 145 147 151 154 153 156 158 162 165 164 167 169 173 176 175,100 90 91 6 7 52 53 21 22 122 112 113 17 18 63 64 144 134 135 28 29 74 75 43 44 166 156 157 39 40 85 86 111 123 124 50 51 65 66 89 101 102 61 62 155 167 168 72 73 87 88 133 145 146 83 84 94 95 129 130 120 121 105 106 118 119 131 132 116 117 127 128 138 139 173 174 164 165 149 150 162 163 175 176 160 161 171 172:5 3 5 3 3 3 5 3 5 3 3 3 5 3 5 3 5 3 5 3 3 3 3 3,4 8 6 4 4 8 4 8 4 4 8 6 6 4 6 4> {(2, 151): 'tau2^-1*t1*tau3', (1, 125): 't2^-1', (2, 55): 't3^-1', (2, 44): 't2^-1', (2, 173): 'tau3*t1*tau2^-1', (2, 174): 't2*tau1*t3^-1', (2, 175): 't2*tau1*t3^-1', (2, 40): 't1^-1', (2, 41): 't1^-1', (2, 164): 't2^-1*tau1^-1*t3', (2, 166): 'tau3', (2, 167): 'tau3', (2, 161): 'tau3^-1*t1^-1*tau2', (1, 103): 't3^-1', (2, 35): 'tau3', (0, 154): 't2^-1', (2, 29): 't1^-1', (2, 30): 't1^-1', (2, 24): 'tau2^-1', (1, 92): 't3', (2, 155): 'tau3^-1', (2, 23): 'tau2^-1', (2, 144): 'tau2^-1', (2, 141): 't3^-1*tau1*t2', (2, 11): 't2', (0, 165): 't2', (2, 0): 't3', (0, 132): 't3^-1', (2, 131): 'tau1', (1, 114): 't2', (2, 120): 'tau1^-1', (2, 139): 'tau2*t1^-1*tau3^-1', (0, 99): 't3^-1', (2, 97): 'tau1', (2, 79): 'tau2', (2, 130): 'tau1'}