U-tiling: UQC5138
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2036 |
*22222 |
(4,6,2) |
{4,4,8,4} |
{6.6.6.6}{6.3.3.6}{6.6.3.3.6.6.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc4728
|
|
Fmmm |
69 |
orthorhombic |
{4,4,8,3} |
10 |
(4,6) |
G
|
False
|
|
sqc10792
|
|
Fddd |
70 |
orthorhombic |
{4,4,8,4} |
20 |
(4,7) |
D
|
False
|
|
sqc5311
|
|
Cmma |
67 |
orthorhombic |
{4,4,8,4} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,4,8,4} |
2D vertex symbol | {6.6.6.6}{6.3.3.6}{6.6.3.3.6.6.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<11.5:192:13 3 5 7 9 11 24 15 17 19 21 23 37 27 29 31 33 35 48 39 41 43 45 47 61 51 53 55 57 59 72 63 65 67 69 71 85 75 77 79 81 83 96 87 89 91 93 95 121 99 101 103 105 107 132 133 111 113 115 117 119 144 123 125 127 129 131 135 137 139 141 143 169 147 149 151 153 155 180 181 159 161 163 165 167 192 171 173 175 177 179 183 185 187 189 191,2 4 12 8 11 10 14 16 24 20 23 22 26 28 36 32 35 34 38 40 48 44 47 46 50 52 60 56 59 58 62 64 72 68 71 70 74 76 84 80 83 82 86 88 96 92 95 94 98 100 108 104 107 106 110 112 120 116 119 118 122 124 132 128 131 130 134 136 144 140 143 142 146 148 156 152 155 154 158 160 168 164 167 166 170 172 180 176 179 178 182 184 192 188 191 190,25 110 111 6 7 116 117 106 107 60 37 134 135 18 19 140 141 130 131 72 158 159 30 31 164 165 154 155 84 182 183 42 43 188 189 178 179 96 73 122 123 54 55 128 129 142 143 85 98 99 66 67 104 105 118 119 170 171 78 79 176 177 190 191 146 147 90 91 152 153 166 167 145 102 103 144 157 114 115 132 169 126 127 181 138 139 150 151 192 162 163 180 174 175 186 187:6 3 3 6 3 3 6 3 3 6 3 3 6 3 6 3 3 3 6 3 6 3 3 3,4 4 8 4 4 4 8 4 4 8 4 4 8 4 4 4 4 4 4 4> {(2, 61): 't3^-1', (2, 62): 't3^-1', (2, 191): 'tau3*t1*tau2^-1', (2, 56): 't2^-1', (0, 191): 't2*tau1*t3^-1', (2, 189): 'tau3', (2, 180): 't2', (0, 179): 't2^-1*tau1^-1*t3', (2, 55): 't2^-1', (2, 49): 't2^-1', (2, 50): 't2^-1', (2, 179): 'tau3^-1*t1^-1*tau2', (2, 45): 'tau3', (2, 46): 'tau3', (2, 47): 't1^-1', (2, 168): 't2^-1', (2, 165): 'tau2^-1', (2, 166): 'tau2^-1', (2, 33): 'tau2^-1', (2, 34): 'tau2^-1', (2, 35): 't1^-1', (2, 156): 't3', (2, 20): 't2', (0, 144): 't3^-1*tau1*t2', (2, 144): 't3^-1', (2, 19): 't2', (2, 13): 't2', (2, 14): 't2', (2, 8): 't3', (0, 143): 'tau1', (0, 131): 'tau1^-1', (2, 7): 't3', (2, 1): 't3', (2, 2): 't3', (2, 190): 'tau3', (2, 104): 't3', (0, 180): 't2*tau1*t3^-1', (0, 108): 'tau1^-1', (0, 96): 'tau1', (2, 103): 't3'}