U-tiling: UQC5189
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2047 |
*22222 |
(4,6,2) |
{4,8,4,4} |
{4.4.4.4}{4.4.4.4.4.4.4.4}{4.4.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc4727
|
|
Fmmm |
69 |
orthorhombic |
{4,7,4,4} |
10 |
(4,6) |
G
|
False
|
|
sqc10881
|
|
Fddd |
70 |
orthorhombic |
{4,8,4,4} |
20 |
(4,7) |
D
|
False
|
|
sqc4852
|
|
Cmma |
67 |
orthorhombic |
{4,4,8,4} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,8,4,4} |
2D vertex symbol | {4.4.4.4}{4.4.4.4.4.4.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<14.2:192:109 3 5 7 9 11 120 133 15 17 19 21 23 144 157 27 29 31 33 35 168 181 39 41 43 45 47 192 121 51 53 55 57 59 132 97 63 65 67 69 71 108 169 75 77 79 81 83 180 145 87 89 91 93 95 156 99 101 103 105 107 111 113 115 117 119 123 125 127 129 131 135 137 139 141 143 147 149 151 153 155 159 161 163 165 167 171 173 175 177 179 183 185 187 189 191,2 12 6 11 8 10 14 24 18 23 20 22 26 36 30 35 32 34 38 48 42 47 44 46 50 60 54 59 56 58 62 72 66 71 68 70 74 84 78 83 80 82 86 96 90 95 92 94 98 108 102 107 104 106 110 120 114 119 116 118 122 132 126 131 128 130 134 144 138 143 140 142 146 156 150 155 152 154 158 168 162 167 164 166 170 180 174 179 176 178 182 192 186 191 188 190,97 4 5 102 103 56 57 22 23 36 121 16 17 126 127 68 69 48 145 28 29 150 151 80 81 46 47 169 40 41 174 175 92 93 133 52 53 138 139 70 71 84 109 64 65 114 115 96 181 76 77 186 187 94 95 157 88 89 162 163 100 101 140 141 130 131 156 112 113 128 129 142 143 168 124 125 180 136 137 192 148 149 188 189 178 179 160 161 176 177 190 191 172 173 184 185:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,4 8 4 4 4 4 4 4 4 4 4 4 8 4 4 4 8 4 8 4> {(2, 188): 'tau3*t1*tau2^-1', (0, 59): 't2^-1', (2, 190): 't2*tau1*t3^-1', (2, 191): 't2', (2, 185): 'tau3', (2, 186): 'tau3', (2, 189): 't2*tau1*t3^-1', (2, 180): 'tau3', (0, 48): 't2^-1', (2, 176): 'tau3^-1*t1^-1*tau2', (2, 177): 't2^-1*tau1^-1*t3', (2, 178): 't2^-1*tau1^-1*t3', (2, 179): 't2^-1', (2, 44): 't1^-1', (2, 173): 'tau3^-1', (2, 174): 'tau3^-1', (2, 175): 'tau3^-1*t1^-1*tau2', (2, 168): 'tau3^-1', (2, 43): 't1^-1', (2, 167): 't3', (2, 32): 't1^-1', (2, 161): 'tau2^-1', (2, 162): 'tau2^-1', (2, 156): 'tau2^-1', (2, 29): 'tau2^-1', (2, 30): 'tau2^-1', (2, 31): 't1^-1', (2, 24): 'tau2^-1', (0, 60): 't3^-1', (0, 11): 't3', (2, 151): 'tau2*t1^-1*tau3^-1', (0, 23): 't2', (2, 141): 'tau1', (2, 142): 'tau1', (0, 12): 't2', (0, 0): 't3', (2, 129): 'tau1^-1', (0, 107): 't3', (2, 106): 'tau1', (2, 107): 't3'}