U-tiling: UQC5190
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2047 |
*22222 |
(4,6,2) |
{4,8,4,4} |
{4.4.4.4}{4.4.4.4.4.4.4.4}{4.4.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5390
|
|
Fmmm |
69 |
orthorhombic |
{4,4,4,8} |
10 |
(4,6) |
G
|
False
|
|
sqc10922
|
|
Fddd |
70 |
orthorhombic |
{4,8,4,4} |
20 |
(4,7) |
D
|
False
|
|
sqc5392
|
|
Cmma |
67 |
orthorhombic |
{4,4,4,8} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,8,4,4} |
2D vertex symbol | {4.4.4.4}{4.4.4.4.4.4.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<14.4:192:49 3 5 7 9 11 60 61 15 17 19 21 23 72 73 27 29 31 33 35 84 85 39 41 43 45 47 96 51 53 55 57 59 63 65 67 69 71 75 77 79 81 83 87 89 91 93 95 133 99 101 103 105 107 144 121 111 113 115 117 119 132 123 125 127 129 131 135 137 139 141 143 181 147 149 151 153 155 192 169 159 161 163 165 167 180 171 173 175 177 179 183 185 187 189 191,2 12 6 11 8 10 14 24 18 23 20 22 26 36 30 35 32 34 38 48 42 47 44 46 50 60 54 59 56 58 62 72 66 71 68 70 74 84 78 83 80 82 86 96 90 95 92 94 98 108 102 107 104 106 110 120 114 119 116 118 122 132 126 131 128 130 134 144 138 143 140 142 146 156 150 155 152 154 158 168 162 167 164 166 170 180 174 179 176 178 182 192 186 191 188 190,13 4 5 18 19 32 33 118 119 108 16 17 44 45 142 143 132 37 28 29 42 43 166 167 156 40 41 190 191 180 61 52 53 66 67 80 81 130 131 144 64 65 92 93 106 107 120 85 76 77 90 91 178 179 192 88 89 154 155 168 121 100 101 126 127 152 153 133 112 113 138 139 164 165 124 125 176 177 136 137 188 189 169 148 149 174 175 181 160 161 186 187 172 173 184 185:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,4 8 4 4 8 4 4 8 8 4 4 4 4 4 4 4 4 4 4 4> {(2, 188): 't2', (2, 191): 'tau3', (2, 57): 't2^-1', (2, 58): 't2^-1', (2, 187): 't2', (2, 180): 't2*tau1*t3^-1', (0, 179): 'tau3^-1*t1^-1*tau2', (2, 176): 't2^-1', (0, 180): 'tau3*t1*tau2^-1', (2, 179): 'tau3^-1', (2, 173): 't2^-1*tau1^-1*t3', (2, 174): 't2^-1*tau1^-1*t3', (2, 168): 't2^-1*tau1^-1*t3', (0, 47): 't1^-1', (2, 164): 't3', (0, 35): 't1^-1', (2, 167): 'tau2^-1', (2, 161): 't3*tau1^-1*t2^-1', (0, 36): 't1^-1', (0, 191): 'tau3*t1*tau2^-1', (0, 24): 't1^-1', (2, 152): 't3^-1', (2, 186): 't2*tau1*t3^-1', (0, 156): 'tau2^-1*t1*tau3', (2, 155): 'tau2', (2, 21): 't2', (2, 151): 't3^-1', (2, 142): 't2^-1', (2, 137): 'tau1', (2, 10): 't3', (2, 163): 't3', (2, 9): 't3', (2, 125): 'tau1^-1', (2, 126): 'tau1^-1', (2, 127): 't2', (2, 120): 'tau1^-1', (2, 138): 'tau1', (2, 108): 'tau1^-1', (2, 105): 't3', (2, 106): 't3'}