U-tiling: UQC5193
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2047 |
*22222 |
(4,6,2) |
{4,8,4,4} |
{4.4.4.4}{4.4.4.4.4.4.4.4}{4.4.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5388
|
|
Fmmm |
69 |
orthorhombic |
{4,4,8,4} |
10 |
(4,6) |
G
|
False
|
|
sqc10794
|
|
Fddd |
70 |
orthorhombic |
{4,8,4,4} |
20 |
(4,7) |
D
|
False
|
|
sqc5114
|
|
Cmma |
67 |
orthorhombic |
{4,8,4,4} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,8,4,4} |
2D vertex symbol | {4.4.4.4}{4.4.4.4.4.4.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<14.5:192:13 3 5 7 9 11 24 15 17 19 21 23 37 27 29 31 33 35 48 39 41 43 45 47 61 51 53 55 57 59 72 63 65 67 69 71 85 75 77 79 81 83 96 87 89 91 93 95 121 99 101 103 105 107 132 133 111 113 115 117 119 144 123 125 127 129 131 135 137 139 141 143 169 147 149 151 153 155 180 181 159 161 163 165 167 192 171 173 175 177 179 183 185 187 189 191,2 12 6 11 8 10 14 24 18 23 20 22 26 36 30 35 32 34 38 48 42 47 44 46 50 60 54 59 56 58 62 72 66 71 68 70 74 84 78 83 80 82 86 96 90 95 92 94 98 108 102 107 104 106 110 120 114 119 116 118 122 132 126 131 128 130 134 144 138 143 140 142 146 156 150 155 152 154 158 168 162 167 164 166 170 180 174 179 176 178 182 192 186 191 188 190,25 4 5 30 31 116 117 106 107 60 37 16 17 42 43 140 141 130 131 72 28 29 164 165 154 155 84 40 41 188 189 178 179 96 73 52 53 78 79 128 129 142 143 85 64 65 90 91 104 105 118 119 76 77 176 177 190 191 88 89 152 153 166 167 145 100 101 150 151 144 157 112 113 162 163 132 169 124 125 174 175 181 136 137 186 187 148 149 192 160 161 180 172 173 184 185:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,4 8 4 4 4 8 4 4 8 4 8 4 4 4 4 4 4 4 4 4> {(2, 189): 'tau3', (2, 190): 'tau3', (2, 191): 'tau3*t1*tau2^-1', (2, 56): 't2^-1', (2, 185): 't2', (2, 186): 't2', (2, 180): 't2', (0, 179): 't2^-1*tau1^-1*t3', (2, 55): 't2^-1', (2, 177): 'tau3^-1', (2, 178): 'tau3^-1', (2, 179): 'tau3^-1*t1^-1*tau2', (0, 191): 't2*tau1*t3^-1', (2, 174): 't2^-1', (2, 47): 't1^-1', (2, 168): 't2^-1', (2, 165): 'tau2^-1', (2, 166): 'tau2^-1', (2, 33): 'tau2^-1', (2, 34): 'tau2^-1', (2, 35): 't1^-1', (2, 156): 't3', (2, 20): 't2', (2, 149): 't3^-1', (0, 144): 't3^-1*tau1*t2', (2, 144): 't3^-1', (2, 19): 't2', (2, 8): 't3', (2, 162): 't3', (0, 131): 'tau1^-1', (2, 7): 't3', (0, 132): 'tau1', (0, 143): 'tau1', (2, 125): 't2', (0, 120): 'tau1^-1', (2, 113): 't3^-1', (2, 104): 't3', (0, 180): 't2*tau1*t3^-1', (2, 102): 't3', (2, 103): 't3'}