U-tiling: UQC5572
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2220 |
*22222 |
(5,6,2) |
{8,3,4,4,4} |
{3.5.5.3.3.5.5.3}{3.5.5}{5.5.5.5... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5988
|
|
Fmmm |
69 |
orthorhombic |
{4,4,3,8,4} |
12 |
(5,6) |
G
|
False
|
|
sqc11454
|
|
Fddd |
70 |
orthorhombic |
{8,3,4,4,4} |
24 |
(5,7) |
D
|
False
|
|
sqc5984
|
|
Cmma |
67 |
orthorhombic |
{4,3,4,8,4} |
12 |
(5,6) |
Topological data
Vertex degrees | {8,3,4,4,4} |
2D vertex symbol | {3.5.5.3.3.5.5.3}{3.5.5}{5.5.5.5}{5.5.5.5}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<18.3:208:105 3 5 7 9 11 13 131 16 18 20 22 24 26 157 29 31 33 35 37 39 183 42 44 46 48 50 52 144 55 57 59 61 63 65 118 68 70 72 74 76 78 196 81 83 85 87 89 91 170 94 96 98 100 102 104 107 109 111 113 115 117 120 122 124 126 128 130 133 135 137 139 141 143 146 148 150 152 154 156 159 161 163 165 167 169 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208,2 107 6 13 8 10 12 15 133 19 26 21 23 25 28 159 32 39 34 36 38 41 185 45 52 47 49 51 54 146 58 65 60 62 64 67 120 71 78 73 75 77 80 198 84 91 86 88 90 93 172 97 104 99 101 103 106 110 117 112 114 116 119 123 130 125 127 129 132 136 143 138 140 142 145 149 156 151 153 155 158 162 169 164 166 168 171 175 182 177 179 181 184 188 195 190 192 194 197 201 208 203 205 207,53 4 5 19 20 34 35 127 128 116 117 66 17 18 47 48 153 154 142 143 79 30 31 45 46 179 180 168 169 92 43 44 205 206 194 195 56 57 71 72 86 87 140 141 155 156 69 70 99 100 114 115 129 130 82 83 97 98 192 193 207 208 95 96 166 167 181 182 144 108 109 136 137 164 165 131 121 122 149 150 177 178 134 135 190 191 147 148 203 204 196 160 161 188 189 183 173 174 201 202 186 187 199 200:3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 5 5 5 5 5 5 5 5,8 3 4 4 4 3 4 4 8 3 4 3 4 3 4 4 3 4 3 3 8 4 4 8> {(2, 188): 't2^-1*tau1^-1*t3', (2, 189): 't2^-1', (2, 190): 't2^-1', (2, 187): 't2^-1*tau1^-1*t3', (2, 180): 'tau2^-1', (2, 181): 'tau2^-1', (2, 182): 'tau3^-1*t1^-1*tau2', (2, 176): 't3', (2, 177): 't3', (2, 174): 't3*tau1^-1*t2^-1', (2, 175): 't3*tau1^-1*t2^-1', (2, 168): 'tau2', (2, 164): 't3^-1', (2, 167): 'tau2', (0, 39): 'tau3', (2, 163): 't3^-1', (0, 26): 'tau2^-1', (2, 39): 't1^-1', (1, 93): 'tau2', (2, 153): 't2^-1', (2, 148): 'tau1', (1, 80): 'tau3^-1', (2, 150): 't2^-1', (2, 151): 't2^-1', (2, 78): 't1', (2, 140): 't2', (2, 136): 'tau1^-1', (2, 9): 't3', (2, 10): 't3', (2, 139): 't2', (2, 135): 'tau1^-1', (2, 22): 't2', (2, 123): 'tau1^-1', (2, 113): 't3', (2, 114): 't3', (1, 41): 'tau3', (0, 91): 'tau2', (1, 28): 'tau2^-1', (2, 206): 'tau3', (2, 207): 'tau3', (0, 78): 'tau3^-1', (2, 193): 'tau3^-1', (2, 194): 'tau3^-1', (2, 195): 'tau3*t1*tau2^-1'}