U-tiling: UQC5778
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2337 |
*22222 |
(5,7,2) |
{4,4,4,4,4} |
{6.6.6.6}{6.4.4.6}{6.6.4.4}{4.4.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc6874
|
|
Fmmm |
69 |
orthorhombic |
{4,4,4,4,4} |
14 |
(5,7) |
G
|
False
|
|
sqc11970
|
|
Fddd |
70 |
orthorhombic |
{4,4,4,4,4} |
28 |
(5,8) |
D
|
False
|
|
sqc6902
|
|
Cmma |
67 |
orthorhombic |
{4,4,4,4,4} |
14 |
(5,7) |
Topological data
Vertex degrees | {4,4,4,4,4} |
2D vertex symbol | {6.6.6.6}{6.4.4.6}{6.6.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<28.1:224:29 3 5 7 9 11 13 42 43 17 19 21 23 25 27 56 31 33 35 37 39 41 45 47 49 51 53 55 85 59 61 63 65 67 69 98 99 73 75 77 79 81 83 112 87 89 91 93 95 97 101 103 105 107 109 111 169 115 117 119 121 123 125 182 183 129 131 133 135 137 139 196 197 143 145 147 149 151 153 210 211 157 159 161 163 165 167 224 171 173 175 177 179 181 185 187 189 191 193 195 199 201 203 205 207 209 213 215 217 219 221 223,2 4 14 8 13 10 12 16 18 28 22 27 24 26 30 32 42 36 41 38 40 44 46 56 50 55 52 54 58 60 70 64 69 66 68 72 74 84 78 83 80 82 86 88 98 92 97 94 96 100 102 112 106 111 108 110 114 116 126 120 125 122 124 128 130 140 134 139 136 138 142 144 154 148 153 150 152 156 158 168 162 167 164 166 170 172 182 176 181 178 180 184 186 196 190 195 192 194 198 200 210 204 209 206 208 212 214 224 218 223 220 222,127 114 115 6 7 120 121 66 67 26 27 28 155 142 143 20 21 148 149 80 81 183 170 171 34 35 176 177 94 95 54 55 56 211 198 199 48 49 204 205 108 109 141 156 157 62 63 162 163 82 83 84 113 128 129 76 77 134 135 197 212 213 90 91 218 219 110 111 112 169 184 185 104 105 190 191 118 119 164 165 152 153 154 132 133 150 151 166 167 168 146 147 160 161 174 175 220 221 208 209 210 188 189 206 207 222 223 224 202 203 216 217:6 4 6 4 4 4 6 4 6 4 4 4 6 4 6 4 6 4 6 4 4 4 4 4,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 189): 'tau2^-1', (2, 190): 'tau2^-1', (2, 191): 'tau2^-1*t1*tau3', (2, 184): 'tau2^-1', (2, 180): 't3^-1*tau1*t2', (2, 181): 't3^-1*tau1*t2', (2, 183): 'tau2^-1', (2, 176): 'tau2', (2, 177): 'tau2*t1^-1*tau3^-1', (2, 178): 'tau2*t1^-1*tau3^-1', (2, 179): 't3^-1*tau1*t2', (2, 175): 'tau2', (2, 169): 'tau2', (2, 170): 'tau2', (2, 37): 't1^-1', (2, 165): 'tau1', (2, 166): 'tau1', (2, 167): 'tau1', (2, 38): 't1^-1', (0, 154): 't2^-1', (0, 153): 't2', (2, 152): 'tau1^-1', (2, 153): 'tau1^-1', (2, 154): 't2^-1', (0, 139): 't3^-1', (2, 151): 'tau1^-1', (0, 167): 't2^-1', (2, 140): 't2', (2, 52): 't1^-1', (0, 140): 't2', (2, 0): 't3', (0, 126): 't3^-1', (0, 125): 't3', (0, 112): 't3', (2, 112): 't3', (2, 51): 't1^-1', (2, 221): 't2*tau1*t3^-1', (2, 222): 't2*tau1*t3^-1', (2, 223): 't2*tau1*t3^-1', (2, 217): 'tau3', (2, 218): 'tau3', (2, 212): 'tau3', (2, 211): 'tau3', (2, 204): 'tau3^-1', (2, 206): 'tau3^-1*t1^-1*tau2', (2, 203): 'tau3^-1', (2, 197): 'tau3^-1', (2, 198): 'tau3^-1'}