U-tiling: UQC5779
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc2337 |
*22222 |
(5,7,2) |
{4,4,4,4,4} |
{6.6.6.6}{6.4.4.6}{6.6.4.4}{4.4.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc6651
|
|
Fmmm |
69 |
orthorhombic |
{4,4,4,4,4} |
14 |
(5,7) |
G
|
False
|
|
sqc11829
|
|
Fddd |
70 |
orthorhombic |
{4,4,4,4,4} |
28 |
(5,8) |
D
|
False
|
|
sqc6872
|
|
Cmma |
67 |
orthorhombic |
{4,4,4,4,4} |
14 |
(5,7) |
Topological data
Vertex degrees | {4,4,4,4,4} |
2D vertex symbol | {6.6.6.6}{6.4.4.6}{6.6.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<28.4:224:57 3 5 7 9 11 13 70 71 17 19 21 23 25 27 84 85 31 33 35 37 39 41 98 99 45 47 49 51 53 55 112 59 61 63 65 67 69 73 75 77 79 81 83 87 89 91 93 95 97 101 103 105 107 109 111 155 115 117 119 121 123 125 168 141 129 131 133 135 137 139 154 143 145 147 149 151 153 157 159 161 163 165 167 211 171 173 175 177 179 181 224 197 185 187 189 191 193 195 210 199 201 203 205 207 209 213 215 217 219 221 223,2 4 14 8 13 10 12 16 18 28 22 27 24 26 30 32 42 36 41 38 40 44 46 56 50 55 52 54 58 60 70 64 69 66 68 72 74 84 78 83 80 82 86 88 98 92 97 94 96 100 102 112 106 111 108 110 114 116 126 120 125 122 124 128 130 140 134 139 136 138 142 144 154 148 153 150 152 156 158 168 162 167 164 166 170 172 182 176 181 178 180 184 186 196 190 195 192 194 198 200 210 204 209 206 208 212 214 224 218 223 220 222,15 30 31 6 7 36 37 136 137 124 125 126 44 45 20 21 50 51 164 165 152 153 154 43 34 35 192 193 180 181 182 48 49 220 221 208 209 210 71 86 87 62 63 92 93 150 151 166 167 168 100 101 76 77 106 107 122 123 138 139 140 99 90 91 206 207 222 223 224 104 105 178 179 194 195 196 141 170 171 118 119 176 177 155 184 185 132 133 190 191 198 199 146 147 204 205 212 213 160 161 218 219 197 174 175 211 188 189 202 203 216 217:6 4 6 4 6 4 6 4 4 4 4 4 6 4 6 4 4 4 6 4 6 4 4 4,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 189): 't3', (2, 190): 't3', (2, 184): 't3', (2, 180): 'tau2', (2, 181): 'tau2', (2, 182): 't3*tau1^-1*t2^-1', (2, 183): 't3', (2, 176): 't3^-1', (0, 55): 't1^-1', (2, 179): 'tau2', (0, 42): 't1^-1', (0, 168): 'tau2*t1^-1*tau3^-1', (0, 41): 't1^-1', (2, 168): 't3^-1*tau1*t2', (2, 169): 't3^-1', (2, 170): 't3^-1', (2, 164): 't2^-1', (2, 161): 't2^-1', (2, 162): 't2^-1', (2, 163): 't2^-1', (2, 156): 't2^-1', (0, 28): 't1^-1', (2, 155): 't2^-1', (2, 148): 't2', (2, 149): 't2', (2, 150): 't2', (2, 147): 't2', (2, 140): 'tau1^-1', (2, 141): 't2', (2, 142): 't2', (2, 136): 't3^-1', (2, 53): 'tau3', (2, 135): 't3^-1', (2, 126): 'tau1^-1', (2, 121): 't3', (2, 122): 't3', (0, 182): 'tau2^-1*t1*tau3', (0, 181): 'tau2*t1^-1*tau3^-1', (2, 221): 'tau3', (2, 222): 'tau3', (2, 223): 'tau3', (0, 209): 'tau3^-1*t1^-1*tau2', (2, 208): 'tau3^-1', (2, 209): 'tau3^-1', (2, 175): 't3^-1', (2, 193): 'tau2^-1', (2, 194): 'tau2^-1', (2, 195): 'tau2^-1'}