U-tiling: UQC5822
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc452 |
*2224 |
(3,4,2) |
{4,8,4} |
{4.4.4.4}{4.3.3.4.4.3.3.4}{3.3.3.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc6682
|
|
Fmmm |
69 |
orthorhombic |
{8,8,4,4,4} |
10 |
(5,6) |
G
|
False
|
|
sqc11884
|
|
Fddd |
70 |
orthorhombic |
{4,8,8,4,4} |
20 |
(5,7) |
D
|
False
|
|
sqc6414
|
|
Cmma |
67 |
orthorhombic |
{8,4,4,4,8} |
10 |
(5,6) |
Topological data
Vertex degrees | {4,8,8,4,4} |
2D vertex symbol | {3.3.3.3}{3.4.4.3.3.4.4.3}{3.4.4.3.3.4.4.3}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<1.2:224:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224,3 6 5 9 14 11 13 17 20 19 23 28 25 27 31 34 33 37 42 39 41 45 48 47 51 56 53 55 59 62 61 65 70 67 69 73 76 75 79 84 81 83 87 90 89 93 98 95 97 101 104 103 107 112 109 111 115 118 117 121 126 123 125 129 132 131 135 140 137 139 143 146 145 149 154 151 153 157 160 159 163 168 165 167 171 174 173 177 182 179 181 185 188 187 191 196 193 195 199 202 201 205 210 207 209 213 216 215 219 224 221 223,127 128 115 116 7 8 65 66 25 26 41 42 155 156 143 144 21 22 79 80 55 56 183 184 171 172 35 36 93 94 53 54 211 212 199 200 49 50 107 108 141 142 157 158 63 64 81 82 97 98 113 114 129 130 77 78 111 112 197 198 213 214 91 92 109 110 169 170 185 186 105 106 119 120 163 164 151 152 181 182 133 134 149 150 165 166 195 196 147 148 209 210 161 162 223 224 175 176 219 220 207 208 189 190 205 206 221 222 203 204 217 218:3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4,4 8 8 4 4 4 8 8 4 8 4 4 8 8 4 8 4 4 4 4> {(2, 190): 'tau2^-1*t1*tau3', (2, 191): 'tau2^-1*t1*tau3', (2, 56): 't2^-1', (2, 57): 't2^-1', (2, 180): 't3^-1', (2, 181): 't3^-1', (2, 176): 'tau2*t1^-1*tau3^-1', (2, 177): 'tau2*t1^-1*tau3^-1', (2, 50): 't1^-1', (2, 51): 't1^-1', (2, 44): 'tau3', (2, 45): 'tau3', (2, 170): 'tau2', (2, 171): 'tau2', (2, 36): 't1^-1', (2, 37): 't1^-1', (2, 166): 't2^-1', (2, 167): 't2^-1', (2, 185): 'tau2^-1', (2, 152): 't2', (2, 153): 't2', (2, 154): 't2^-1', (2, 155): 't2^-1', (2, 150): 'tau1^-1', (2, 151): 'tau1^-1', (2, 165): 'tau1', (2, 136): 'tau1^-1', (2, 138): 't3^-1', (2, 139): 't3^-1', (2, 0): 't3', (2, 1): 't3', (2, 112): 't3', (2, 178): 't3^-1*tau1*t2', (2, 100): 'tau2', (2, 179): 't3^-1*tau1*t2', (2, 220): 't2*tau1*t3^-1', (2, 221): 't2*tau1*t3^-1', (2, 212): 'tau3', (2, 213): 'tau3', (2, 71): 't3^-1'}