Orbifold symbol | *2224 |
Transitivity (vertex, edge, ring) | (3,4,2) |
Vertex degrees | {4,8,4} |
2D vertex symbol | {4.4.4.4}{4.3.3.4.4.3.3.4}{3.3.3.3} |
Vertex coordination sequence | [(4, 16, 44, 128, 372, 1072, 3100, 8960, 25892, 74832), (8, 24, 72, 208, 600, 1736, 5016, 14496, 41896), (4, 20, 52, 160, 460, 1324, 3832, 11076, 32004, 92496)] |
Delaney-Dress Symbol | <452.2:7:1 3 4 5 7,2 4 6 7,1 2 3 5 6 7:4 3,4 8 4> |
Dual net | hqc348 |
Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
---|---|---|---|---|---|---|---|---|
sqc6529 | I4/mmm | 139 | tetragonal | {4,8,4} | 10 | (3,4) | ||
sqc6678 | I4/mmm | 139 | tetragonal | {4,8,4} | 10 | (3,4) | ||
sqc6682 | Fmmm | 69 | orthorhombic | {8,8,4,4,4} | 10 | (5,6) | ||
sqc6684 | Fmmm | 69 | orthorhombic | {4,4,4,8,8} | 10 | (5,6) | ||
sqc11773 | P4/mmm | 123 | tetragonal | {4,8,8,4,4} | 20 | (5,6) | ||
sqc11782 | P4/mmm | 123 | tetragonal | {4,8,8,4,4} | 20 | (5,6) | ||
sqc11772 | I4122 | 98 | tetragonal | {4,8,8,4,4} | 20 | (5,7) | ||
sqc11804 | I4122 | 98 | tetragonal | {4,8,8,4,4} | 20 | (5,7) | ||
sqc11805 | I41/acd | 142 | tetragonal | {4,8,4} | 20 | (3,4) | ||
sqc11859 | I41/acd | 142 | tetragonal | {4,8,4} | 20 | (3,4) | ||
sqc11884 | Fddd | 70 | orthorhombic | {4,8,8,4,4} | 20 | (5,7) | ||
sqc11891 | Fddd | 70 | orthorhombic | {4,8,8,4,4} | 20 | (5,7) | ||
sqc6414 | Cmma | 67 | orthorhombic | {8,4,4,4,8} | 10 | (5,6) | ||
sqc6418 | P42/nnm | 134 | tetragonal | {8,4,4} | 10 | (3,4) | ||
sqc6500 | P4222 | 93 | tetragonal | {4,8,4,4,8} | 10 | (5,6) | ||
sqc6515 | P4222 | 93 | tetragonal | {4,4,8,4,8} | 10 | (5,6) | ||
sqc6522 | Cmma | 67 | orthorhombic | {4,8,4,4,8} | 10 | (5,6) | ||
sqc6679 | P42/nnm | 134 | tetragonal | {8,4,4} | 10 | (3,4) |
Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
---|---|---|---|---|---|---|---|---|
UQC3338 | *2224 | (3,4,2) | {4,8,4} | {4.4.4.4}{4.3.3.4.4.3.3.4}{3.3.3.3} | sqc6678 | sqc11859 | sqc6679 | |
UQC3339 | *2224 | (3,4,2) | {4,8,4} | {4.4.4.4}{4.3.3.4.4.3.3.4}{3.3.3.3} | sqc6529 | sqc11805 | sqc6418 | |
UQC5822 | *22222b | (5,6,2) | {4,8,8,4,4} | {3.3.3.3}{3.4.4.3.3.4.4.3}{3.4.4... | sqc6682 | sqc11884 | sqc6414 | |
UQC5823 | *22222b | (5,6,2) | {4,8,8,4,4} | {3.3.3.3}{3.4.4.3.3.4.4.3}{3.4.4... | sqc6684 | sqc11891 | sqc6522 | |
UQC5824 | *22222a | (5,6,2) | {4,8,8,4,4} | {3.3.3.3}{3.4.4.3.3.4.4.3}{3.4.4... | sqc11782 | sqc11804 | sqc6500 | |
UQC5825 | *22222a | (5,6,2) | {4,8,8,4,4} | {3.3.3.3}{3.4.4.3.3.4.4.3}{3.4.4... | sqc11773 | sqc11772 | sqc6515 |