U-tiling: UQC5919
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2402 |
*22222 |
(6,7,2) |
{4,3,4,4,4,4} |
{3.6.6.3}{3.6.6}{6.6.6.6}{6.6.6.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc7333
|
|
Fmmm |
69 |
orthorhombic |
{4,4,4,4,3,4} |
16 |
(6,7) |
G
|
False
|
|
sqc12237
|
|
Fddd |
70 |
orthorhombic |
{4,3,4,4,4,4} |
32 |
(6,8) |
D
|
False
|
|
sqc7369
|
|
Cmma |
67 |
orthorhombic |
{3,4,4,4,4,4} |
16 |
(6,7) |
Topological data
Vertex degrees | {4,3,4,4,4,4} |
2D vertex symbol | {3.6.6.3}{3.6.6}{6.6.6.6}{6.6.6.6}{6.6.6.6}{6.6.6.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<31.1:240:31 3 5 7 9 11 13 15 46 18 20 22 24 26 28 30 33 35 37 39 41 43 45 48 50 52 54 56 58 60 91 63 65 67 69 71 73 75 106 78 80 82 84 86 88 90 93 95 97 99 101 103 105 108 110 112 114 116 118 120 181 123 125 127 129 131 133 135 196 138 140 142 144 146 148 150 211 153 155 157 159 161 163 165 226 168 170 172 174 176 178 180 183 185 187 189 191 193 195 198 200 202 204 206 208 210 213 215 217 219 221 223 225 228 230 232 234 236 238 240,2 33 6 15 8 10 12 14 17 48 21 30 23 25 27 29 32 36 45 38 40 42 44 47 51 60 53 55 57 59 62 93 66 75 68 70 72 74 77 108 81 90 83 85 87 89 92 96 105 98 100 102 104 107 111 120 113 115 117 119 122 183 126 135 128 130 132 134 137 198 141 150 143 145 147 149 152 213 156 165 158 160 162 164 167 228 171 180 173 175 177 179 182 186 195 188 190 192 194 197 201 210 203 205 207 209 212 216 225 218 220 222 224 227 231 240 233 235 237 239,136 4 5 141 142 128 129 70 71 27 28 44 45 166 19 20 171 172 158 159 85 86 59 60 196 34 35 201 202 188 189 100 101 57 58 226 49 50 231 232 218 219 115 116 151 64 65 156 157 173 174 87 88 104 105 121 79 80 126 127 143 144 119 120 211 94 95 216 217 233 234 117 118 181 109 110 186 187 203 204 124 125 175 176 162 163 194 195 139 140 160 161 177 178 209 210 154 155 224 225 169 170 239 240 184 185 235 236 222 223 199 200 220 221 237 238 214 215 229 230:3 6 3 6 6 6 3 6 3 6 6 6 3 6 3 6 3 6 3 6 6 6 6 6,4 3 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 3 4 4 3 4 4 3 4 4 3 4 3 3 4> {(2, 188): 'tau2', (2, 189): 'tau2*t1^-1*tau3^-1', (2, 190): 'tau2*t1^-1*tau3^-1', (1, 122): 't3', (2, 187): 'tau2', (2, 54): 't1^-1', (2, 55): 't1^-1', (2, 176): 'tau1', (2, 177): 'tau1', (2, 178): 't2^-1', (2, 179): 't2^-1', (2, 191): 't3^-1*tau1*t2', (2, 40): 't1^-1', (2, 170): 't2^-1', (2, 171): 't2^-1', (2, 164): 't2', (2, 165): 't2^-1', (2, 39): 't1^-1', (0, 165): 't2^-1', (2, 161): 'tau1^-1', (2, 162): 'tau1^-1', (2, 163): 't2', (2, 156): 't2', (2, 155): 't2', (2, 148): 't3^-1', (2, 149): 't3^-1', (2, 150): 't2', (0, 150): 't2', (1, 212): 't2^-1', (2, 140): 't3^-1', (2, 141): 't3^-1', (2, 133): 't3', (2, 134): 't3', (2, 135): 't3^-1', (1, 197): 't3', (0, 135): 't3^-1', (2, 125): 't3', (0, 120): 't3', (2, 120): 't3', (2, 236): 't2*tau1*t3^-1', (2, 237): 't2*tau1*t3^-1', (2, 232): 'tau3', (2, 233): 'tau3', (2, 126): 't3', (1, 167): 't2^-1', (2, 220): 'tau3^-1*t1^-1*tau2', (2, 222): 't2^-1*tau1^-1*t3', (2, 217): 'tau3^-1', (2, 218): 'tau3^-1', (2, 219): 'tau3^-1*t1^-1*tau2', (2, 202): 'tau2^-1', (2, 203): 'tau2^-1'}