U-tiling: UQC6035
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2434 |
*22222 |
(6,7,2) |
{4,4,8,4,4,4} |
{3.3.3.3}{3.5.5.3}{3.5.5.3.3.5.5... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc7916
|
|
Fmmm |
69 |
orthorhombic |
{4,4,4,8,4,4} |
14 |
(6,7) |
G
|
False
|
|
sqc12381
|
|
Fddd |
70 |
orthorhombic |
{4,4,8,4,4,4} |
28 |
(6,8) |
D
|
False
|
|
sqc7904
|
|
Cmma |
67 |
orthorhombic |
{4,4,4,4,4,8} |
14 |
(6,7) |
Topological data
Vertex degrees | {4,4,8,4,4,4} |
2D vertex symbol | {3.3.3.3}{3.5.5.3}{3.5.5.3.3.5.5.3}{5.5.5.5}{5.5.5.5}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<2.4:256:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256,3 6 5 9 16 11 13 15 19 22 21 25 32 27 29 31 35 38 37 41 48 43 45 47 51 54 53 57 64 59 61 63 67 70 69 73 80 75 77 79 83 86 85 89 96 91 93 95 99 102 101 105 112 107 109 111 115 118 117 121 128 123 125 127 131 134 133 137 144 139 141 143 147 150 149 153 160 155 157 159 163 166 165 169 176 171 173 175 179 182 181 185 192 187 189 191 195 198 197 201 208 203 205 207 211 214 213 217 224 219 221 223 227 230 229 233 240 235 237 239 243 246 245 249 256 251 253 255,65 66 19 20 7 8 41 42 155 156 141 142 79 80 81 82 23 24 57 58 187 188 173 174 95 96 97 98 51 52 39 40 219 220 205 206 111 112 113 114 55 56 251 252 237 238 127 128 83 84 71 72 105 106 171 172 189 190 87 88 121 122 139 140 157 158 115 116 103 104 235 236 253 254 119 120 203 204 221 222 177 178 163 164 135 136 201 202 191 192 161 162 179 180 151 152 217 218 175 176 167 168 233 234 183 184 249 250 241 242 227 228 199 200 255 256 225 226 243 244 215 216 239 240 231 232 247 248:3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5,4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 8 4 4 4 4 8 4 8 4 4 4> {(2, 62): 't1^-1', (2, 63): 't1^-1', (2, 184): 't2^-1', (2, 185): 't2^-1', (2, 186): 't2^-1', (2, 187): 't2^-1', (2, 48): 't1^-1', (2, 49): 't1^-1', (2, 178): 'tau1', (2, 179): 'tau1', (2, 46): 't1^-1', (2, 47): 't1^-1', (2, 168): 't2', (2, 169): 't2', (2, 170): 't2', (2, 171): 't2', (2, 32): 't1^-1', (2, 33): 't1^-1', (2, 162): 'tau1^-1', (2, 163): 'tau1^-1', (2, 152): 't3^-1', (2, 153): 't3^-1', (2, 154): 't3^-1', (2, 155): 't3^-1', (2, 136): 't3', (2, 137): 't3', (2, 138): 't3', (2, 139): 't3', (2, 252): 'tau3', (2, 253): 'tau3', (2, 254): 'tau3*t1*tau2^-1', (2, 255): 'tau3*t1*tau2^-1', (2, 240): 'tau3*t1*tau2^-1', (2, 241): 'tau3*t1*tau2^-1', (2, 242): 't2*tau1*t3^-1', (2, 243): 't2*tau1*t3^-1', (2, 236): 'tau3^-1', (2, 237): 'tau3^-1', (2, 238): 'tau3^-1*t1^-1*tau2', (2, 239): 'tau3^-1*t1^-1*tau2', (2, 224): 'tau3^-1*t1^-1*tau2', (2, 225): 'tau3^-1*t1^-1*tau2', (2, 226): 't2^-1*tau1^-1*t3', (2, 227): 't2^-1*tau1^-1*t3', (2, 220): 'tau2^-1', (2, 221): 'tau2^-1', (2, 204): 'tau2', (2, 205): 'tau2'}