U-tiling: UQC6036
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2434 |
*22222 |
(6,7,2) |
{4,4,8,4,4,4} |
{3.3.3.3}{3.5.5.3}{3.5.5.3.3.5.5... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc7919
|
|
Fmmm |
69 |
orthorhombic |
{4,4,4,4,4,8} |
14 |
(6,7) |
G
|
False
|
|
sqc12383
|
|
Fddd |
70 |
orthorhombic |
{4,4,8,4,4,4} |
28 |
(6,8) |
D
|
False
|
|
sqc7913
|
|
Cmma |
67 |
orthorhombic |
{4,4,4,4,4,8} |
14 |
(6,7) |
Topological data
Vertex degrees | {4,4,8,4,4,4} |
2D vertex symbol | {3.3.3.3}{3.5.5.3}{3.5.5.3.3.5.5.3}{5.5.5.5}{5.5.5.5}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<2.3:256:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256,3 6 5 9 16 11 13 15 19 22 21 25 32 27 29 31 35 38 37 41 48 43 45 47 51 54 53 57 64 59 61 63 67 70 69 73 80 75 77 79 83 86 85 89 96 91 93 95 99 102 101 105 112 107 109 111 115 118 117 121 128 123 125 127 131 134 133 137 144 139 141 143 147 150 149 153 160 155 157 159 163 166 165 169 176 171 173 175 179 182 181 185 192 187 189 191 195 198 197 201 208 203 205 207 211 214 213 217 224 219 221 223 227 230 229 233 240 235 237 239 243 246 245 249 256 251 253 255,129 130 67 68 7 8 25 26 43 44 157 158 143 144 161 162 83 84 23 24 59 60 189 190 175 176 193 194 99 100 39 40 57 58 221 222 207 208 225 226 115 116 55 56 253 254 239 240 177 178 71 72 89 90 107 108 173 174 191 192 145 146 87 88 123 124 141 142 159 160 241 242 103 104 121 122 237 238 255 256 209 210 119 120 205 206 223 224 179 180 135 136 169 170 203 204 163 164 151 152 185 186 219 220 167 168 235 236 183 184 251 252 243 244 199 200 233 234 227 228 215 216 249 250 231 232 247 248:3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5,4 4 8 4 4 4 4 4 4 4 4 4 8 4 4 4 4 4 4 4 4 4 4 4 8 4 4 8> {(2, 188): 't2^-1', (2, 189): 't2^-1', (2, 184): 'tau1', (2, 185): 'tau1', (2, 186): 't2^-1', (2, 187): 't2^-1', (2, 50): 't1^-1', (2, 51): 't1^-1', (2, 172): 't2', (2, 173): 't2', (2, 168): 'tau1^-1', (2, 169): 'tau1^-1', (2, 170): 't2', (2, 171): 't2', (2, 34): 't1^-1', (2, 35): 't1^-1', (2, 156): 't3^-1', (2, 157): 't3^-1', (2, 154): 't3^-1', (2, 155): 't3^-1', (2, 140): 't3', (2, 141): 't3', (2, 138): 't3', (2, 139): 't3', (2, 254): 'tau3', (2, 255): 'tau3', (2, 248): 't2*tau1*t3^-1', (2, 249): 't2*tau1*t3^-1', (2, 240): 'tau3', (2, 241): 'tau3', (2, 242): 'tau3*t1*tau2^-1', (2, 243): 'tau3*t1*tau2^-1', (2, 238): 'tau3^-1', (2, 239): 'tau3^-1', (2, 232): 't2^-1*tau1^-1*t3', (2, 233): 't2^-1*tau1^-1*t3', (2, 224): 'tau3^-1', (2, 225): 'tau3^-1', (2, 226): 'tau3^-1*t1^-1*tau2', (2, 227): 'tau3^-1*t1^-1*tau2', (2, 222): 'tau2^-1', (2, 223): 'tau2^-1', (2, 208): 'tau2^-1', (2, 209): 'tau2^-1', (2, 206): 'tau2', (2, 207): 'tau2', (2, 192): 'tau2', (2, 193): 'tau2'}